Skip to main content
Log in

Progress and trend of narrow-linewidth lasers

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

High frequency stability, narrow-linewidth lasers have been long dreamed of since the invention of the laser. They have recently developed dramatically due to the advent of optical clocks. State-of-the-art narrow-linewidth lasers have been constructed by using the Pound-Drever-Hall (PDH) technique to lock the laser frequencies to the resonance of ultra-stable external optical cavities with high finesse. This paper introduces the developments of narrow-linewidth lasers, with a focus on the improvements of length stability of optical reference cavities, including optical cavity designs of vibration insensitivity and low thermal noise. Future trends and alternative methods for narrow-linewidth lasers are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. In: 13th General Conference on Weigths and Measures (Conférence Générale des Poids et Mesures, CGPM). Paris: Intermational Bureau of Weights and Measures (Bureau International des Poids et Mesures, BIPM), 10–16th October, 1967

  2. Chu S. The manipulation of neutral particles. Rev Mod Phys, 1998, 70(3): 685–706

    Article  Google Scholar 

  3. Cohen-Tannoudji C N. Manipulating atoms with photons. Rev Mod Phys, 1998, 70(3): 707–719

    Article  Google Scholar 

  4. Phillips W D. Laser cooling and trapping of neutral atoms. Rev Mod Phys, 1998, 70(3): 721–741

    Article  Google Scholar 

  5. Campbell G K, Phillips W D. Ultracold atoms and precise time standards. Phil Trans R Soc A, 2011, 369(1953): 4078–4089

    Article  Google Scholar 

  6. Diddams S A, Udem Th, Bergquist J C, et al. An optical clock based on a single trapped 199Hg+ ion. Science, 2001, 293(5531): 825–828

    Article  Google Scholar 

  7. Diddams S A, Bergquist J C, Jefferts S R, et al. Standards of time and frequency at the outset of the 21st century. Science, 2004, 306(5700): 1318–1324

    Article  Google Scholar 

  8. Evenson K M, Wells J S, Petersen F R, et al. Speed of ligth from direct frequency and wavelength measurements of the methane-stabilized laser. Phys Rev Lett, 1972, 29(19): 1346–1349

    Article  Google Scholar 

  9. Hänsch T W. Nobel Lecture: Passion for precision. Rev Mod Phys, 2006, 78(4): 1297–1309

    Article  Google Scholar 

  10. Hall J L. Nobel Lecture: Defining and measuring optical frequencies. Rev Mod Phys, 2006, 78(4): 1279–1295

    Article  Google Scholar 

  11. Ludlow A D, Zelevinsky T, Campbell G K, et al. Sr lattice clock at 1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock. Science, 2008, 319(5871): 1805–1808

    Article  Google Scholar 

  12. Lemke N D, Ludlow A D, Barber Z W, et al. Spin-1/2 optical lattice clock. Phys Rev Lett, 2009, 103(6): 063001

    Article  Google Scholar 

  13. Rosenband T, Hume D B, Schmidt P O, et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place. Science, 2008, 319(5871): 1808–1812

    Article  Google Scholar 

  14. McFerran J J, Yi L, Mejri S, et al. Neutral atom frequency reference in the deep ultraviolet with fractional uncertainty = 5.7×10−15. Phys Rev Lett, 2012, 108(18): 183004

    Article  Google Scholar 

  15. Chwalla M, Benhelm J, Kim K, et al. Absolute frequency measurement of the 40Ca+ 4s 2 S 1/2-3d 2 D 5/2 clock transition. Phys Rev Lett, 2009, 102(2): 023002

    Article  Google Scholar 

  16. Huntemann N, Okhapkin M, Lipphardt B, et al. High-accuracy optical clock based on the octupole transition in 171Yb+. Phys Rev Lett, 2012, 108(9): 090801

    Article  Google Scholar 

  17. Huang Y, Cao J, Liu P, et al. Hertz-level measurement of the 40Ca+ 4s 2 S 1/2-3d 2 D 5/2 clock transition frequency with respect to the SI second through the Global Positioning System. Phys Rev A, 2012, 85(3): 030503

    Article  Google Scholar 

  18. Li T C, Fang Z J. From meter to second at NIM: Stabilized lasers-Cs fountain clocks-fs optical freuqency combs-Sr lattice clock (in Chinese). Chin Sci Bull, 2011, 56(10): 709–716

    Article  Google Scholar 

  19. Chou C W, Hume D B, Koelemeij J C J, et al. Frequency comparison of two high-accuracy Al+ optical clocks. Phys Rev Lett, 2010, 104(7): 070802

    Article  Google Scholar 

  20. In: 17th meeting of the Consultative Committee for Time and Frequency (CCTF). Paris: Intermational Bureau of Weights and Measures (Bureau International des Poids et Mesures, BIPM), 14–15th September, 2006

  21. In: 19th meeting of the Consultative Committee for Time and Frequency (CCTF). Paris: Intermational Bureau of Weights and Measures (Bureau International des Poids et Mesures, BIPM), 13–14th September, 2012

  22. Takamoto M, Hong F L, Higashi R, et al. An optical lattice clock. Nature, 2005, 435(7040): 321–324

    Article  Google Scholar 

  23. Ma L S, Jungner P, Ye J, et al. Delivering the same optical frequency at two places: Accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt Lett, 1994, 19(21): 1777–1779

    Article  Google Scholar 

  24. Cerez P, Brillet A, Man-Pichot C N, et al. He-Ne lasers stabilized by saturated absorption in iodine at 612 nm. IEEE Trans Instrum Meas, 1980, 29(4): 352–354

    Article  Google Scholar 

  25. Ma L S, Hall J L. Optical heterodyne spectroscopy enhanced by an external optical cavity: Toward improved working standards. IEEE J Quantum Electron, 1990, 26(11): 2006–2012

    Article  Google Scholar 

  26. Hall J L, Ma L S, Taubman M, et al. Stabilization and frequency measurement of the I2-stabilized Nd:YAG laser. IEEE Trans Instrum Meas, 1999, 48(2): 583–586

    Article  Google Scholar 

  27. Bjorklund G C. Frequency-modulation spectroscopy: A new method for measuring weak absorptions and dispersions. Opt Lett, 1980, 5(1): 15–17

    Article  Google Scholar 

  28. Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator. Appl Phys B, 1983, 31(2): 97–105

    Article  Google Scholar 

  29. Jiang Y, Fang S, Bi Z, et al. Nd:YAG lasers at 1064 nm with 1-Hz linewidth. Appl Phys B, 2010, 98(1): 61–67

    Article  Google Scholar 

  30. Stoehr H, Mensing F, Helmcke J, et al. Diode laser with 1 Hz linewidth. Opt Lett, 2006, 31(6): 736–738

    Article  Google Scholar 

  31. Notcutt M, Ma L S, Ye J, et al. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. Opt Lett, 2005, 30(14): 1815–1817

    Article  Google Scholar 

  32. Li Y, Nagano S, Matsubara K, et al. Development of an ultra-narrow line-width clock laser. J Natl Inst Inf Commun Technol, 2010, 57(3–4): 175–186

    Google Scholar 

  33. Liu T, Wang Y H, Dumke R, et al. Narrow linewidth light source for an ultraviolet optical frequency standard. Appl Phys B, 2007, 87(2): 227–232

    Article  Google Scholar 

  34. Jiang H, Kéfélian F, Crane S, et al. Long-distance frequency transfer over an urban fiber link using optical phase stabilization. J Opt Soc Am B, 2008, 25(12): 2029–2035

    Article  Google Scholar 

  35. Young B C, Cruz F C, Itano W M, et al. Visible lasers with subhertz linewidths. Phys Rev Lett, 1999, 82(19): 3799–3802

    Article  Google Scholar 

  36. Webster S A, Oxborrow M, Gill P. Subhertz-linewidth Nd:YAG laser. Opt Lett, 2004, 29(13): 1497–1499

    Article  Google Scholar 

  37. Alnis J, Matveev A, Kolachevsky N, et al. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities. Phys Rev A, 2008, 77(5): 053809

    Article  Google Scholar 

  38. Ludlow A D, Huang X, Notcutt M, et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10−15. Opt Lett, 2007, 32(6): 641–643

    Article  Google Scholar 

  39. Jiang Y Y, Ludlow A D, Lemke N D, et al. Making optical atomic clocks more stable with 10−16-level laser stabilization. Nat Photonics, 2011, 5(3): 158–161

    Article  Google Scholar 

  40. Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity. Nat Photonics, 2012, 6: 687–692

    Article  Google Scholar 

  41. Swallows M D, Martin M J, Bishof M, et al. Operating a 87Sr optical lattice clock with high precision and at high density. IEEE Trans Ultrason Ferroelectr Freq Control, 2012, 59(3): 416–425

    Article  Google Scholar 

  42. Bartels A, Diddams S A, Oates C W, et al. Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. Opt Lett, 2005, 30(6): 667–669

    Article  Google Scholar 

  43. Fortier T M, Kirchner M S, Quinlan F, et al. Generation of ultrastable microwaves via optical frequency division. Nat Photonics, 2011, 5(7): 425–429

    Article  Google Scholar 

  44. Fortier T M, Ashby N, Bergquist J C, et al. Precision atomic spectroscopy for improved limits on variation of the fine structure constant and local position invariance. Phys Rev Lett, 2007, 98(7): 070801

    Article  Google Scholar 

  45. Turyshev S G. Experimental tests of general relativity: Recent progress and future directions. Phys-Usp, 2009, 52(1): 1–27

    Article  Google Scholar 

  46. Waldman S J. Status of LIGO at the start of the fifth science run. Class Quantum Grav, 2006, 23(19): S653–S660

    Article  MATH  Google Scholar 

  47. Leibfried D, Blatt R, Monroe C, et al. Quantum dynamics of single trapped ions. Rev Mod Phys, 2003, 75(1): 281–324

    Article  Google Scholar 

  48. Black E. Notes on Pound-Drever-Hall Technique. LIGO Technical Notes, 1998

    Google Scholar 

  49. Black E D. An introduction to Pound-Drever-Hall laser frequency stabilization. Am J Phys, 2001, 69(1): 79–87

    Article  Google Scholar 

  50. Di Domenico G, Schilt S, Thomann P. Simple approach to the relation between laser frequency noise and laser line shape. Appl Opt, 2010, 49(25): 4801–4807

    Article  Google Scholar 

  51. Whittaker E A, Gehrtz M, Bjorklund G C. Residual amplitude modulation in laser electro-optic phase modulation. J Opt Soc Am B, 1985, 2(8): 1320–1326

    Article  Google Scholar 

  52. Sathian J, Jaatinen E. Intensity dependent residual amplitude modulation in electro-optic phase modulators. Appl Opt, 2012, 51(16): 3684–3691

    Article  Google Scholar 

  53. Ludlow A D. The Strontium Optical Lattice Clock: Optical Spectroscopy with Sub-hertz Accuracy. Dissertation of the Doctoral Degree. Colorado: Colorado University, 2008. 105–106

    Google Scholar 

  54. Wong N C, Hall J L. Servo control of amplitude modulation in frequency-modulation spectroscopy: Demonstration of shot-noise-limited detection. J Opt Soc Am B, 1985, 2(9): 1527–1533

    Article  Google Scholar 

  55. Li L, Liu F, Wang C, et al. Measurement and control of residual amplitude modulation in optical phase modulation. Rev Sci Instrum, 2012, 83(4): 043111

    Article  Google Scholar 

  56. Salomon C, Hils D, Hall J L. Laser stabilization at the millihertz level. J Opt Soc Am B, 1988, 5(8): 1576–1587

    Article  Google Scholar 

  57. Sampas N E, Gustafson E K, Byer R L. Long-term stability of two diode-laser-pumped nonplanar ring lasers independently stabilized to two Fabry-Perot interferometers. Opt Lett, 1993, 18(12): 947–949

    Article  Google Scholar 

  58. Nakagawa K, Shelkovnikov A S, Katsuda T, et al. Absolute frequency stability of a diode-laser-pumped Nd: YAG laser stabilized to a high-finesse optical cavity. Appl Opt, 1994, 33(27): 6383–6386

    Article  Google Scholar 

  59. Chen L, Hall J L, Ye J, et al. Vibration-induced elastic deformation of Fabry-Perot cavities. Phys Rev A, 2006, 74(5): 053801

    Article  Google Scholar 

  60. Zhao Y N, Zhang J, Stejskal A, et al. A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability. Opt Express, 2009, 17(11): 8970–8982

    Article  Google Scholar 

  61. Webster S A, Oxborrow M, Gill P. Vibration insensitive optical cavity. Phys Rev A, 2007, 75(1): 011801

    Article  Google Scholar 

  62. Nazarova T, Riehle F, Sterr U. Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser. Appl Phys B, 2006, 83(4): 531–536

    Article  Google Scholar 

  63. Millo J, Magalhães D V, Mandache C, et al. Ultrastable lasers based on vibration insensitive cavities. Phys Rev A, 2009, 79(5): 053829

    Article  Google Scholar 

  64. Numata K, Kemery A, Camp J. Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. Phys Rev Lett, 2004, 93(25): 250602

    Article  Google Scholar 

  65. Callen H B, Greene R F. On a theorem of irreversible thermodynamics. Phys Rev, 1952, 86(5): 702–710

    Article  MathSciNet  MATH  Google Scholar 

  66. Notcutt M, Ma L S, Ludlow A D, et al. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers. Phys Rev A, 2006, 73(3): 031804

    Article  Google Scholar 

  67. Legero T, Kessler T, Sterr U. Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors. J Opt Soc Am B, 2010, 27(5): 914–919

    Article  Google Scholar 

  68. Nicholson T L, Martin M J, Williams J R, et al. Comparison of two independent Sr optical clocks with 1×10−17 stability at 103 s. Phys Rev Lett, 2012, 109(23): 230801

    Article  Google Scholar 

  69. Richard J P, Hamilton J J. Cryogenic monocrystalline silicon Fabry-Perot cavity for the stabilization of laser frequency. Rev Sci Instrum, 1991, 62(10): 2375–2378

    Article  Google Scholar 

  70. Cole G D, Gröblacher S, Gugler K, et al. Monocrystalline AlxGa1−x As heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime. Appl Phys Lett, 2008, 92(26): 261108

    Article  Google Scholar 

  71. Cole G D, Bai Y, Aspelmeyer M, et al. Free-standing AlxGa1−x As heterostructures by gas-phase etching of germanium. Appl Phys Lett, 2010, 96(26): 261102

    Article  Google Scholar 

  72. Thorpe M J, Rippe L, Fortier T M, et al. Frequency stabilization to 6×10−16 via spectral-hole burning. Nat Photonics, 2011, 5: 688–693

    Article  Google Scholar 

  73. Meiser D, Ye J, Carlson D R, et al. Prospects for a millihertz-linewidth laser. Phys Rev Lett, 2009, 102(16): 163601

    Article  Google Scholar 

  74. Bohnet J G, Chen Z, Weiner J M, et al. A steady-state superradiant laser with less than one intracavity photon. Nature, 2012, 484(7392): 78–81

    Article  Google Scholar 

  75. Coddington I, Swann W C, Lorini L, et al. Coherent optical link over hundreds of metres and hundreds of terahertz with subfemtosecond timing jitter. Nat Photonics, 2007, 1(5): 283–287

    Article  Google Scholar 

  76. Fortier T M, Kirchner M S, Quinlan F, et al. Generation of ultrastable microwaves via optical frequency division. Nat Photonics, 2011, 5(7): 425–429

    Article  Google Scholar 

  77. Foreman S M, Ludlow A D, de Miranda M H G, et al. Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10−17. Phys Rev Lett, 2007, 99(15): 153601

    Article  Google Scholar 

  78. Predehl K, Grosche G, Raupach S M F, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science, 2012, 336(6080): 441–444

    Article  Google Scholar 

  79. Vogt S, Lisdat C, Legero T, et al. Demonstration of a trasportable 1 Hz-linewidth laser. Appl Phys B, 2011, 104(4): 741–745

    Article  Google Scholar 

  80. Argence B, Prevost E, Lévèque T, et al. Prototype of an ultra-stable optical cavity for space applications. Opt Express, 2012, 20(23): 25409–25420

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YanYi Jiang or LongSheng Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Jiang, Y., Bi, Z. et al. Progress and trend of narrow-linewidth lasers. Sci. China Technol. Sci. 56, 1589–1596 (2013). https://doi.org/10.1007/s11431-013-5192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-013-5192-7

Keywords

Navigation