Skip to main content
Log in

Development of silicon photonic devices for optical interconnects

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

Silicon photonic devices based on complementary-metal-oxide-semiconductor (CMOS) compatible technologies have shown attractive performances on very-large-scale monolithic optoelectronic integration, high speed modulation and switching, and efficient off-chip optical coupling. This paper presents the recent progress on fast silicon optical modulation, wavelength-insensitive optical switching and efficient optical coupling techniques in our group. Several CMOS-compatible silicon optical couplers with different structures have been developed, showing the highest coupling efficiency of 65%. Broadband silicon-based optical switches with sub-nanosecond switching on-off time are experimentally realized. Silicon modulators with novel PN junctions are demonstrated with the speed up to 50 Gb s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Miller D A B. Device requirements for optical interconnects to silicon chips. Proc IEEE, 2009, 97: 1166–1185

    Article  Google Scholar 

  2. Shacham A, Bergman K, Carloni L P. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans Comput, 2008, 57: 1246–1260

    Article  MathSciNet  Google Scholar 

  3. Vivien L, Polzer A, Marris-Morini D, et al. Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20: 1096–1101

    Article  Google Scholar 

  4. Li G, Yao J, Thacker H, et al. Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. Opt Express, 2012, 20: 12035–12039

    Article  Google Scholar 

  5. Zortman W A, Lentine A L, Trotter D C, et al. Low-voltage differentially-signaled modulators. Opt Express, 2011, 19: 26017–26026

    Article  Google Scholar 

  6. Xu Q, Fattal D, Beausoleil R G. Silicon microring resonators with 1.5-μm radius. Opt Express, 2008, 16: 4309–4315

    Article  Google Scholar 

  7. Gunn C. CMOS photonics for high-speed interconnects. IEEE Micro, 2006, 26: 58–66

    Article  Google Scholar 

  8. Liang D, Roelkens G, Baets R, et al. Hybrid integrated platforms for silicon photonics. Materials, 2010, 3: 1782–1802

    Article  Google Scholar 

  9. Fan Z C, Han W H, Yang F H, et al. Inductively coupled plasma etching of SOI and its applications in submicron optical waveguide devices. Proc SPIE, 2009, 7516: 75160B

    Article  Google Scholar 

  10. Xiong K, Xiao X, Hu Y T, et al. Single-mode silicon-on-insulator elliptical microdisk resonators with high Q factors. Proc SPIE, 2011, 8333: 83330A

    Article  Google Scholar 

  11. Huang Q Z, Xiao X, Li Y T, et al. Flat-top passband filter based on parallel-coupled double microring resonators in silicon. Proc SPIE, 2009, 7516: 751607

    Article  Google Scholar 

  12. Tsuchizawa T, Watanabe T, Yamada K, et al. Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres. Elec Lett, 2002, 38: 1669–1679

    Article  Google Scholar 

  13. Nemkova A, Xiao X, Yang B, et al. Design and Characterization of a Top Cladding for Silicon-on-Insulator Grating Coupler. Chin Phys Lett, 2012, 29: 114213

    Article  Google Scholar 

  14. Soref R A, Bennett B R. Electrooptical effects in silicon. IEEE J Quantum Electron, 1987, 23: 123–129

    Article  Google Scholar 

  15. Xiao X, Xu H H, Zhou L, et al. Sub-nanosecond silicon-on-insulator optical micro-ring switch with low crosstalk. Chin Opt Lett, 2010, 8: 757–760

    Article  Google Scholar 

  16. Xu X J, Chen S W, Xu H H, et al. High-speed 2×2 silicon-based electro-optic switch with nanosecond switch time. Chin Phys B, 2009, 18(9): 3900–3904

    Article  Google Scholar 

  17. Zhou L, Li Z Y, Xiao X, et al. A compact and highly efficient silicon-based asymmetric Mach-Zehnder modulator with broadband spectral operation. Chin Phys Lett, 2011, 28: 074202

    Article  Google Scholar 

  18. Gardes F, Reed G, Emerson N, et al. A sub-micron depletion-type photonic modulator in silicon on insulator. Opt Express, 2005, 13: 8845–8854

    Article  Google Scholar 

  19. Li Z Y, Xu D X, McKinnon W R, et al. Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions. Opt Express, 2009, 17: 15947–15958

    Article  Google Scholar 

  20. Xiao X, Xu H, Li X Y, et al. 25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions. Opt Express, 2012, 20: 2507–2515

    Article  Google Scholar 

  21. Xu H, Xiao X, Li X Y, et al. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. Opt Express, 2012, 20: 15093–15099

    Article  Google Scholar 

  22. Thomson D, Gardes F, Fedeli J, et al. 50 Gbit/s silicon optical modulator. IEEE Photon Technol Lett, 2012, 24: 234–236

    Article  Google Scholar 

  23. Dong P, Chen L, Chen Y K. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt Express, 2012, 20: 6163–6169

    Article  Google Scholar 

  24. Xiao X, Li X Y, Xu H, et al. 44-Gb/s silicon microring modulators based on zigzag PN junctions. IEEE Photon Technol Lett, 2012, 24: 1712–1714

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinZhong Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, X., Li, Z., Chu, T. et al. Development of silicon photonic devices for optical interconnects. Sci. China Technol. Sci. 56, 586–593 (2013). https://doi.org/10.1007/s11431-012-5120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-5120-2

Keywords

Navigation