Skip to main content
Log in

Modeling the yaw dynamics of an unmanned helicopter through modes partition method

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

The main difficulties in modeling yaw dynamics of a helicopter arise from the high nonlinearities, cross-couplings and dynamic uncertainties of these aerocraft. This paper proposes a new identification approach for yaw dynamics modeling through modes partition method (MPM) with a concentrated search space limited by implicit human factors. Working from first principles and basic aerodynamics, the nonlinear equations of motion for yaw dynamics is derived. The model is linearized and transformed into a combination of dynamic modes, whose coefficients are identified from real-flight data through distributed genetic algorithm (DGA). The effectiveness of the approach is validated in terms of the identified model which can accurately capture the dynamic characters of the helicopter. Time- and frequency-domain results clearly demonstrate the potential of MPM in modeling such complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Romero H, Salazar S, Lozano R. Real-Time stabilization of an eight-rotor UAV using optical flow. IEEE Trans Robot, 2009, 25(4): 809–817

    Article  Google Scholar 

  2. Toha S F, Tokhi M O. Real-coded genetic algorithm for parametric modeling of a TRMS. In: IEEE Congress on Evolutionary Computation. Trondheim, Norway, 2009. 2022–2026

  3. Mettler B, Tischler M B, Kanade T. System identification of small-size unmanned helicopter dynamics. In: American Helicopter Society 55th Forum. Quebec, Canada, 1999. 4–7

  4. Cai G W, Chen B M, Peng K M, et al. Modeling and control of the yaw channel of a UAV helicopter. IEEE T Ind Electron, 2008, 55(9): 3426–3431

    Article  Google Scholar 

  5. Saffarian M, Fahini F. A. Comprehensive kinematic analysis of a model helicopter’s actuating mechanism. In: 46th AIAA Aerospace Sciences Meeting and Exhibit. Reno, USA, 2008. 2–18

  6. Bhandari S, Colgren R. 14-DoF linear parameter varying model of a UAV helicopter using analytical techniques. In: AIAA Modeling and Simulation Technologies Conference and Exhibit. Honolulu, USA, 2008. 4–17

  7. Pinnamaneni M, Frye M T, Qian C J, et al. Nonlinear equations of motion in the simulation of the raptor 50 V2 remote controlled helicopter with optimal controller design. In: AIAA Modeling and Simulation Technologies Conference and Exhibit. San Francisco, USA, 2005. 3–11

  8. Schafroth D, Bermes C, Bouabdallah S, et al. Modeling, system identification and robust control of a coaxial micro helicopter. Control Eng Pract, 2010, 18: 700–704

    Article  Google Scholar 

  9. Song B Q, Mills J K, Liu Y H, et al. Nonlinear dynamic modeling and control of a small-scale helicopter. Int J Control Autom Syst, 2010, 8(3): 534–543

    Article  Google Scholar 

  10. Alam M S, Tokhi M O. Modelling of a twin rotor system: a practical warm optimization approach. J Aerosp Eng, 2007, 221(1): 353–356

    Google Scholar 

  11. Samal M K, Anavatti S, Garratt M. Neural network based system identification for autonomous flight of an eagle helicopter. In: Proc of the 17th World Congress/The International Federation of Automatic Control. Seoul, Korea, 2008. 7421–7426

  12. Chen H S, Chen D R. Identification of a model helicopter’s yaw dynamics. J Dyn Syst-T ASME, 2005, 127: 140–143

    Article  Google Scholar 

  13. Ahmed B, Pota H R. Dynamic compensation for control of a rotary wing UAV using positive position feedback. J Intell Robot Syst, 2011 61(1): 43–56

    Article  Google Scholar 

  14. Kumar R, Ganguli R, Omkar S N. Rotorcraft parameter identification from real time flight data. J Aircraft, 2008, 45: 335–340

    Google Scholar 

  15. Verscheure D, Sharf I, Bruyninckx H, et al, Identification of contact dynamics parameters for stiff robotic payloads. IEEE T Robot, 2009, 25(2): 240–2503

    Article  Google Scholar 

  16. Fang Z, Li P. Grey-box modeling of a small-scale helicopter using physical knowledge and Bayesian techniques. In: 2008 10th Intentional Conference on Control, Automation, Robotics and Vision. Hanoi, Vietnam, 2008. 2096–2100

  17. Sun T, Song Y G, Zhang C L. Subspace based system identification of small-scale helicopter flight dynamics (in Chinese). J Nnanjing Univ Aero Astro, 2008, 40(5): 589–593

    Google Scholar 

  18. Verdult V, Lovera M, Verhaegen M. Identification of linear parameter-varying state-space models with application to helicopter rotor dynamics. Int J Control, 2004, 77(13): 1149–1159

    Article  MATH  MathSciNet  Google Scholar 

  19. Raptis I A, Valavanis K P, Kandel A, et al. System identification for a miniature helicopter at hover using fuzzy models. J Intell Robot Syst, 2009, 56: 347–360

    Article  Google Scholar 

  20. Wu W, Chen R L. Identification method for helicopter fully coupled flight dynamics model in hover condition (in Chinese). Acta Aeronaut Astronaut Sin, 2011, 32(2): 202–211

    Google Scholar 

  21. Song D L, Qi J T, Han J D. Model identification and active modeling control for small-size unmanned helicopters: Theory and experiment. In: AIAA Guidance, Navigation, and Control Conference. Toronto, Canada, 2010. 1–21

  22. Zhao Z G, Lu T S. GA-based evolutionary identification of model structure for small-scale robot helicopter system. Embedded Systems Modeling—Technology and Applications. Netherlands: Springer, 2006. 151–155

    Google Scholar 

  23. Lei X S, Du Y H. A linear domain system identification for small unmanned aerial rotorcraft based on adaptive genetic algorithm. J Bionic Eng, 2010, 7(2): 142–149

    Article  Google Scholar 

  24. Zhao Z G, Gou X F, Lv T S. GA-based model evolutionary identification for yaw channel of small-scale unmanned helicopter (in Chinese). Robot, 2010, 32(3): 439–442

    Article  Google Scholar 

  25. Tischler M B, Remple R K. Aircraft and Rotorcraft System Identification. Reston: American Institute of Aeronautics and Astronautics, 2006. 83–450

    Google Scholar 

  26. Ivler C M, Tischler M B. System identification modeling for flight control design. In: RAES Rotorcraft Handling-Qualities Conference. Liverpool, UK, 2008. 4–19

  27. Downs J, Prentice R, Dalzell S, et al. Control system development and flight test experience with the MQ-8B fire scout vertical take-off unmanned aerial vehicle (VTUAV). In: American Helicopter Society 63rd Annual Forum. Virginia, USA, 2007. 6

  28. Fletcher J W. Identification of a high-order linear model of the UH-60M helicopter flight dynamics in hover. In AIAA Atmospheric Flight Mechanics Conference and Exhibit. Hawaii, USA, 2008. 1–18

  29. Adiprawita W, Ahmad A S, Sembiring J. Automated flight test and system identification for rotary wing small aerial platform using frequency responses analysis. J Bionic Eng, 2007, 4: 237–239

    Article  Google Scholar 

  30. Raptis I A, Valavanis K P, Moreno W A. System identification and discrete nonlinear control of miniature helicopter using backstepping. J Intell Robot Syst, 2009, 55: 223–227

    Article  MATH  Google Scholar 

  31. Khaldi M R, Chamchoum S, El Abiad H H, et al. Plant Identification and Predictive Control of a Scaled-Model Helicopter, In: IEEE International Symposium on Industrial Electronics. Seoul, Korea, 2009. 1720–1725

  32. Leishman J G. Principles of Helicopter Aerodynamics II. Cambridge: Cambridge University Press, 2006. 257–684

    Google Scholar 

  33. Cai G W, Chen B M, Lee T H. Comprehensive nonlinear modeling of an unmanned-aerial-vehicle helicopter. In: AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, USA, 2008. 1–24

  34. Seddon J, Newman S. Basic Helicopter Aerodynamics II. Reston: American Institute of Aeronautics and Astronautics, 2001. 35–92

    Google Scholar 

  35. Kim S K, Tilbury D M. Mathematical modeling and experimental identification of an unmanned helicopter robot with flybar dynamics. J Intell Robot Syst, 2004, 21(3): 96–113

    Google Scholar 

  36. Wu J D, Li P, Han B. A modeling method of miniature unmanned helicopter based on parameter identification (in Chinese). Acta Aeronaut Astronaut Sin, 2007, 28(4): 845–850

    Google Scholar 

  37. Wang Z G, Wong Y S, Rahman M. Development of a parallel optimization method based on genetic simulated annealing algorithm. Parallel Comput, 2005, 31: 846–847

    Article  Google Scholar 

  38. Alba E, Luna F, Nebro A J, et al. Parallel heterogeneous genetic algorithms for continuous optimization. Parallel Comput, 2004, 30: 699–719

    Article  Google Scholar 

  39. Wang G L. Flight video. http://u.youku.com/user_show/uid_space-agle

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuanLin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Xia, H., Yuan, X. et al. Modeling the yaw dynamics of an unmanned helicopter through modes partition method. Sci. China Technol. Sci. 55, 182–192 (2012). https://doi.org/10.1007/s11431-011-4576-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-011-4576-9

Keywords

Navigation