Skip to main content
Log in

A general methodology for mobility analysis of mechanisms based on constraint screw theory

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

It is well known that the traditional Grübler-Kutzbach formula fails to calculate the mobility of some classical mechanisms or many modern parallel robots, and this situation seriously hampers mechanical innovation. To seek an efficient and universal method for mobility calculation has been a heated topic in the sphere of mechanism. The modified Grübler-Kutzbach criterion proposed by us achieved success in calculating the mobility of a lot of highly complicated mechanisms, especially the mobility of all recent parallel mechanisms listed by Gogu, and the Bennett mechanism known for its particular difficulty. With wide applications of the criterion, a systematic methodology has recently formed. This paper systematically presents the methodology based on the screw theory for the first time and analyzes six representative puzzling mechanisms. In addition, the methodology is convenient for judgment of the instantaneous or full-cycle mobility, and has become an effective and general method of great scientific value and practical significance. In the first half, this paper introduces the basic screw theory, then it presents the effective methodology formed within this decade. The second half of this paper presents how to apply the methodology by analyzing the mobility of several puzzling mechanisms. Finally, this paper contrasts and analyzes some different methods and interprets the essential reason for validity of our methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grübler M. Allgemeine eigenschaften der zwangläufigen ebenen kinematische kette: I. Civilingenieur, 1883, 29: 167–200

    Google Scholar 

  2. Kutzbach K. Mechanische Leitungsverzweigung, ihre Gesetze und Anwendungen. Maschinenbau, 1929, 8(21): 710–716

    Google Scholar 

  3. Suh C H, Radcliffe C W. Kinematics and Mechanisms Design. New York: John Wiley & Sons, 1978

    Google Scholar 

  4. Hunt K H. Structural kinematics of in-parallel-actuated robot-arms. Trans ASME J Mech Aut Des, 1983, 105(11): 705–712

    Google Scholar 

  5. Cox D, Tesar D. The dynamic model of a three degrees of freedom parallel robotics shoulder module. In: Proceedings of 4th International Conference on Advanced Robotics. Berlin: Springer-Verlag, 1989. 475–487

    Google Scholar 

  6. Gosselin C M, Angeles J. The optimum kinematic design of a spherical three-DOF parallel manipulator. Trans ASME J Mech Design, 1989, 111(2): 202–207

    Google Scholar 

  7. Tsai L W, Walsh G C, Stamper R E. Kinematics of a novel three DOF translational platform. In: Proceedings of IEEE International Conference on Robotics and Automation, 1996. 3446–3451

  8. Kim H S, Tsai LW. Design optimization of a Cartesian parallel manipulator. In: ASME Conference, MECH-34301, 2002

  9. Hervé J M, Sparacino F. Structural synthesis of parallel robots generating spatial translation. In: Proceedings of 5th IEEE International Conference on Advanced Robotics. Italy: Pisa, 1991. 808–813

  10. Clavel R. Delta, a fast robot with parallel geometry. In: Proceedings of the International Symposium on Industrial Robot, 1988. 91–100

  11. Rolland L. The Manta and the Kanuk: novel 4-DOF parallel mechanisms for industrial handling. In: Proceedings of ASME Dynamic Systems and Control Division, 67, IMECE’99 Conference. USA: Nashville, 1999. 831–844

  12. Zhao T S, Huang Z. A novel 4-DOF parallel mechanism and its position analysis (in Chinese). Mech Sci Tech, 2000, 19(6): 927–929

    Google Scholar 

  13. Zlatanov D, Gosselin C M. A new parallel architecture with four-DOF. In: Proceedings of the Workshop on Computational Kinematics, 2001. 57–66

  14. Huang Z, Li Q C. Two novel symmetrical 5-DOF parallel mechanisms (in Chinese). J Yanshan University, 2001, 25(4): 283–286

    Google Scholar 

  15. Kong X W, Gosselin C M, Richard P L. Type synthesis of parallel mechanisms with multiple operation modes. In: ASME Conference, MECH-99638, 2006

  16. Chebychev P A. Théorie des mécanismes connus sous le nom de parallélogrammes. Mémoires présentésàl_Académie impériale des sciences de Saint-Pétersbourg par divers savants, 1854

  17. Dobrovolski V V. Dynamic analysis of statically constraint mechanisms (in Russian). Teorii Masini Mekhanizmov, 1949

  18. Hunt K H, Phillips J R. Zur Kinematic mechanischer Verbindung für räumliche Bewegung. Maschinenbau, 1965, 14: 657–664

    Google Scholar 

  19. Waldron K J. The constraint analysis of mechanisms. J Mechanisms, 1966, 1: 101–114

    Article  Google Scholar 

  20. Bagci C. Degrees of freedom of motion in mechanisms. Trans ASME J Engi Industry, 1971, 93B: 140–148

    Google Scholar 

  21. Freudenstein F, Alizade R. On the degree-of-freedom of mechanisms with variable general constraint. In: Proceedings of 4th World Congress on Theory of Machines and Mechanisms. Newcastle: Tyne, 1975

  22. Hervé J M. Analyse structurelle des mécanismes par groupe des déplacements. Mech Mach Theory, 1978, 13(4): 437–450

    Article  Google Scholar 

  23. Baker J E. On relative freedom between links in kinematic chains with cross-jointing. Mech Mach Theory, 1980, 15(3): 397–413

    Article  Google Scholar 

  24. Davies T H. Mechanical networks—I: Passivity and redundancy. Mech Mach Theory, 1983, 18(2): 95–101

    Article  Google Scholar 

  25. Agrawal V P, Rao J S. Structural classification of kinematic chains and mechanisms. Mech Mach Theory, 1987, 22(5): 489–496

    Article  Google Scholar 

  26. Angeles J, Gosselin C M. Détermination du degree de liberté des chaînes ciné matiques. Trans CSME, 1988, 12(4): 219–226

    Google Scholar 

  27. Tsai L W. Robot Analysis: The Mechanics of Serial and Parallel Manipulators. New York: John Wiley, 1999

    Google Scholar 

  28. McCarthy J M. Geometric Design of Linkages. New York: Springer-Verlag, 2000. 3–8

    MATH  Google Scholar 

  29. Gogu G. Mobility of mechanisms: a critical review. Mech Mach Theory, 2005, 40(9): 1068–1097

    Article  MATH  MathSciNet  Google Scholar 

  30. Merlet J P. Parallel Robots. Netherland: Kluwer Academic Publishers, 2000

    MATH  Google Scholar 

  31. Huang Z, Kong L F, Fang Y F. Mechanism theory of parallel robotic manipulator and control. Beijing: China Machine Press, 1997

    Google Scholar 

  32. Huang Z, Li Q C. General methodology for type synthesis of lower-mobility symmetrical parallel manipulators and several novel manipulators. Int J Rob Research, 2002, 21(2): 131–146

    Article  Google Scholar 

  33. Huang Z, Li Q C. Type synthesis of symmetrical lower-mobility parallel mechanisms using constraint-synthesis method. Int J Rob Research, 2003, 22(1): 59–79

    Google Scholar 

  34. Huang Z, Xia P. The mobility analysis of some classical mechanism and recent parallel robots. In: ASME Conference, MECH-99109, 2006

  35. Liu J F, Zhu S J, Zeng D X, et al. Mobility analysis of several mechanisms including two novel parallel mechanisms and some “paradoxical” linkages (in Chinese). J Yanshan University, 2006, 30(6): 487–494

    Google Scholar 

  36. Rico J M, Ravani B. On mobility analysis of linkages using group theory. Trans ASME J Mech Design, 2003, 125(1): 70–80

    Article  Google Scholar 

  37. Rico J M, Gallardo J, Ravani B. Lie Algebra and the mobility of kinematic chains. J Robotic Systems, 2003, 20(8): 477–499

    Article  MATH  Google Scholar 

  38. Kong X W, Gosselin C M. Mobility analysis of parallel mechanisms based on screw theory and the concept of equivalent serial kinematic chain. In: ASME Conference, MECH-85337, 2005

  39. Gogu G. Chebychev-Grübler-Kutzbach’s criterion for mobility calculation of multi-loop mechanisms revisited via theory of linear transformations. European J Mechanics-A/Solids, 2005, 24(3): 427–441

    Article  MATH  MathSciNet  Google Scholar 

  40. Shukla G, Whitney D E. The Path Method for Analyzing Mobility and Constraint of Mechanisms and Assemblies. IEEE Trans Autom Sci Eng, 2005, 2(2): 184–192

    Article  Google Scholar 

  41. Ball R S. The Theory of Screws. London: Cambridge University Press, 1900

    Google Scholar 

  42. Huang Z, Zhao Y S, Zhao T S. Advanced Spatial Mechanisms. Beijing: Higher Education Press, 2006

    Google Scholar 

  43. Merlet J P. Singular configurations of parallel manipulator and grassmann geometry. Int J Rob Research, 1989, 8(5): 45–56

    Article  Google Scholar 

  44. Brand L. Vector and Tensor Analysis. New York: John Wiley & Sons, 1947

    MATH  Google Scholar 

  45. Kong X W, Gosselin C M. Generation of parallel manipulators with three translational degrees of freedom based on screw theory. In: Proceedings of IFtoMM Symposium on Mechanisms, Machines, and Mechatronics. Canada: Saint-Hubert, 2001

    Google Scholar 

  46. Wenger P, Chablat D. Design strategies for the geometric synthesis of orthoglide-type mechanisms. Mech Mach Theory, 2005, 40(8): 907–930

    Article  MATH  MathSciNet  Google Scholar 

  47. Hervé J M, Sparacino F. STAR, a new concept in robotics. In: The 3rd International Workshop on Advances in Robot Kinematics, 1992

  48. Carricato M, Parenti-Castelli V. Singularity-free fully isotropic translational parallel mechanism. Int J Rob Research, 2002, 21(2): 161–174

    Article  Google Scholar 

  49. Baker J E. The Bennett linkage and its associated quadric surfaces. Mech Mach Theory, 1988, 23(2): 147–156

    Article  Google Scholar 

  50. Hunt K H. Kinematic Geometry of Mechanisms. Oxford: Oxford University Press, 1978

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Huang.

Additional information

Supported by the National Natural Science Foundation of China (Gratn Nos. 50875227, 50575197)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Z., Liu, J. & Zeng, D. A general methodology for mobility analysis of mechanisms based on constraint screw theory. Sci. China Ser. E-Technol. Sci. 52, 1337–1347 (2009). https://doi.org/10.1007/s11431-008-0219-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0219-1

Keywords