Skip to main content
Log in

Aerodynamic simulation of high-speed trains based on the Lattice Boltzmann Method (LBM)

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Aerodynamic simulation of high-speed trains has been carried out by using Lattice Boltzmann Method (LBM). Non-simplified train model was used and the number of space grids reached tens of millions. All results under different working conditions reflected the actual situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen Y S, Shan X W, Chen H D. New direction of computational fluid dynamics and its applications in industry. Sci China Ser E-Tech Sci, 2007, 50(5): 521–533

    Article  Google Scholar 

  2. Chen S, Chen H, Martinez D, et al. Lattice Boltzmann Model for simulation of magnetohydrodynamics. Phys Rev Lett, 1991, 67(27): 3776–3779

    Article  Google Scholar 

  3. Li Y, Shock R, Zhang R, et al. Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann Method. J Fluid Mech, 2004, 519: 273–300

    Article  MATH  Google Scholar 

  4. Chen H, Chen S, Matthaeus W H. Recovery of Navier-Stokes Equations Using a Lattice-Gas Boltzmann Method. Phys Rev A, 1992, 45(8): R5339–R5342

    Article  Google Scholar 

  5. Raghu S, Raghunathan H-D Kim, Setoguchi T. Aerodynamics of high-speed railway train. Progress in Aerospace Sci, 2002, 38(6–7): 469–514

    Google Scholar 

  6. Wilcox D. Turbulence Modeling for CFD. DCW Industries Inc, 1993

  7. Chen S, Doolen G. Lattice Boltzmann Method for fluid flows. Ann Rev Fluid Mech, 1998, 30: 329–364

    Article  MathSciNet  Google Scholar 

  8. Exa Corporation. PowerFLOW User’s Guide, Release 4.0. http://www.exa.com

  9. Shan X, He X. Discretization of the velocity space in solution of the Boltzmann Equation. Phys Rev Lett, 1998, 80(1): 65–68

    Article  Google Scholar 

  10. Qian Y H, d’Humieres D, Lallemand P. Lattice BGK Models for Navier-Stokes Equation. Europhys Lett, 1992, 17: 479–484

    Article  MATH  Google Scholar 

  11. Bhatnagar P, Gross E, Krook M. A model for collision processes in gases. I: Small amplitude processes in charged and neutral one-component system. Phys Rev, 1954, 94: 511–525

    Article  MATH  Google Scholar 

  12. Chen Y S, Kim S W. Computation of turbulent flows using an extended κ-\( \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\cdot}$}}{\varepsilon } \) turbulence closure model. NASA CR-179204, 1987

  13. Chen H, Teixeira C, Molvig K. Realization of fluid boundary conditions via discrete Boltzmann Dynamics. Intl J Mod Phys C, 1998, 9(8): 1281–1292

    Article  Google Scholar 

  14. Brockie N J W, Baker C J. The aerodynamic drag of high speed trains. J Wind Eng Indust Aerodyn, 1990, 34(3): 273–290

    Article  Google Scholar 

  15. Suzuki M, Tanemoto K, Maeda T. Aerodynamic characteristics of train/vehicles under cross winds. J Wind Eng Indust Aerodyn, 2003, 91(1–2): 209–218

    Article  Google Scholar 

  16. Anderson J D. Computational Fluid Dynamics: The Basics with Applications. Beijing: Tsinghua University Press, 2002

    Google Scholar 

  17. Patankar S V. Numerical Heat Transfer and Fluid Flow. New York: McGraw Hill, 1980

    MATH  Google Scholar 

  18. Du T, Li X, Zhang X, et al. Lattice Boltzmann Method used for the aircraft characteristics computation with high angle of attack. Eng Appl Comput Fluid Mech, accepted

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaoSong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, Y., An, Y. et al. Aerodynamic simulation of high-speed trains based on the Lattice Boltzmann Method (LBM). Sci. China Ser. E-Technol. Sci. 51, 773–783 (2008). https://doi.org/10.1007/s11431-008-0063-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0063-3

Keywords

Navigation