Skip to main content
Log in

New method to extract radial acceleration of target from short-duration signal at low SNR

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

In order to extract target radial acceleration from radar echo signal at low SNR (signal-to-noise), this paper employed FRFT (fractional Fourier transformation) to analyze short-duration radar echo and studied the relations between signal convergence peaks in matched transformation domain and signal duration and modulated frequency of signal. When signal duration is specified, the method of multiplying sampled signal by the known frequency modulated signal to alter modulated frequency was presented, which generated the new signal with larger convergence peaks than the initial signal in matched transformation domain. Thus, it could successfully estimate the radial acceleration of radar target at low SNR. Simulations were conducted to show the feasibility and effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Du W C, Wang G H, Kong M. Research of calculation of radial acceleration of maneuvering target within one pulse echo. In: Wu S J, ed. Proceedings of 2006 CIE international conference on radar. Shanghai: IEEE Press, 2006. 1589–1601

    Google Scholar 

  2. Bhattacharya T K. Time-frequency based detection scheme for missile warning system. In: IEE Radar 97 Conferrence. Edindurg: IEE, 1997. 539–543

    Google Scholar 

  3. Zhao H Z, Fu Q, Zhou J X. The analysis of acceleration resolution and application for the radar signal. Acta Electr Sin (in Chinese), 2003, 6: 958–961

    Google Scholar 

  4. Guy M, Linda H. Airborne Pulsed Doppler Radar. Norwood, Massachusetts: Artech House Publishers, 1996. 103–110

    Google Scholar 

  5. Li J, Jiang H, Song L. A nonlinear filtering algorithm for precise tracking of maneuvering target. Electr Opt Contr (in Chinese), 2006, 13: 3–7

    Google Scholar 

  6. Zhou Y Q, Cao Y W, Feng D W, et al. Single observer passive location and tracking arithmetic using look-acceleration and angle rate of changing information. Acta Electr Sin (in Chinese), 2005, 12: 2120–2124

    Google Scholar 

  7. Su J, Zhang J, Fu Q. Discriminating multi-target based on Doppler profile and acceleration profile. Modern Radar (in Chinese), 2002, 23(6): 43–45

    Google Scholar 

  8. Eric L C, J Brent R, Dieter W. Boostphase acceleration estimation. In: IEEE International Radar Conference. New York: IEEE AES Society, 2000. 210–214

    Google Scholar 

  9. Boashash B. Estimating and interpreting the instantaneous frequency of a singal. Proc IEEE, 1992, 80(4): 519–569

    Google Scholar 

  10. Djuric P M, Kay S M. Parameter estimation of chirp signal. IEEE Trans ASSP, 1990, 38(12): 2118–2126

    Google Scholar 

  11. Barbarossa S, Petrone V. Analysis of polynomial-phase signals by the integrated generalized ambiguity function. IEEE Signal, 1997, 45(2): 316–327

    Article  Google Scholar 

  12. Mao Y C, Bao Z. Parameter estimation of chirp signals with time varying amplitudes using cyclostationary approach. Acta Electr Sin (in Chinese), 1999, 27(4): 135–136

    Google Scholar 

  13. Barkat B. Instantaneous frequency estimation of nonlinear frequency modulated signals in the presence of multiplicative and additive noise. IEEE Signal, 2001, 49: 2214–2222

    Article  Google Scholar 

  14. Cakrak F, Loughlin P J. Multiwindow time-varying spectrum with instantaneous bandwidth and frequency constraints. IEEE Signal, 2001, 49: 1656–1666

    Article  Google Scholar 

  15. Haimovich A M, Peckham C, Teti J G, et al. SAR imagery of movingt argets: Application of time-frequency distributions for estimating motion parameters. In: Proc 1994 SPIE’s International Symposium on Aerospace and Sensing, 1994, 2: 238–247

    Google Scholar 

  16. Kwok H K, Jones D L. Improved instantaneous frequency estimation using an adaptive short-time Fourier transform. IEEE Signal, 2000, 48: 2964–2972

    Article  MathSciNet  Google Scholar 

  17. Rao P, Taylor F J. Estimation of Instantaneous frequency using the discrete Wigner distribution. Electr Lett, 1990, 26(4): 246–248

    Article  Google Scholar 

  18. Igor D, LJubiša S. Nonparametric algorithm for local frequency estimation of multidimensional signals. IEEE Im Pr, 2004, 13(4): 467–474

    Article  Google Scholar 

  19. Selin A, William J W. Minimum entropy time-frequency distributions. IEEE Sig Pl, 2005, 12(1): 37–40

    Google Scholar 

  20. Choi H, Williams W J. Improved time-frequency representation of multi-component signals using exponential kernels. IEEE Signal, 1988, 37(6): 862–871

    Google Scholar 

  21. Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Rough transform. IEEE Signal, 1995, 43(6): 1511–1515

    Article  Google Scholar 

  22. Liu J C, Wang X S, Xiao S P, et al. Radial acceleration estimation based on Wigner-Hough transform. Acta Electr Sin (in Chinese), 2005, 12: 2235–2238

    Google Scholar 

  23. Qi L, Tao R, Zhou S Y, et al. Multicomponent LFM signal detection and Parameter in fractional fourier transform domain. Sci China Ser E (in Chinese), 2003, 33(8): 749–759

    Google Scholar 

  24. Li J, Wang S X, Wang F. Chirp signal analysis based on PWD in fractional Fourier transform domain. Syst Engin Electr (in Chinese), 2005, 6: 988–990

    Google Scholar 

  25. Li Y X, Xiao X C. Linear frequency modulated signal detection and Para meter mation in low signal-to-noise ratio condition. Syst Engin Electr (in Chinese). 2002, 24(8): 44–45

    MATH  Google Scholar 

  26. Okello N N, Challa S. Joint sensor registration and track-to-track fusion for distributed trackers. IEEE Trans Aerospace Electr Syst, 2004, 40(3): 808–823

    Article  Google Scholar 

  27. Zhou H R, Jing Z L, Wang PD. Moving Targets Tracking (in Chinese). Beijing: National Defense Industry Press, 1991. 134–137

    Google Scholar 

  28. Bello P. Joint estimation of delay. Doppler and Dopplert rate. IRE Trans Inf Theory, 1960, 6(3): 330–341

    Article  MathSciNet  Google Scholar 

  29. Kelly E. The radar measurement of rage velocity and acceleration. IRE Trans Military Electr, 1961, 6(2): 51–57

    Article  Google Scholar 

  30. Theagenis J A, Gregory O G. Range, radial velocity and acceleration MLE using radar LFM pulse train. IEEE Trans Aerospace Electr Syst, 1998, 34(4): 1070–1084

    Article  Google Scholar 

  31. Theagenis J A. Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE ICASSP PROC, 1986, 11(1): 708–715

    Google Scholar 

  32. Du Y M, Zhang R Q, Yang J Y. Detection in millimeter LFMCW radar target echo and acceleration velocity estimation. J Infr Millim Waves, 2005, 10(24): 348–351

    Google Scholar 

  33. Du Y M, Yang J Y. Novel method of moving target detection and parameter estimation for LFMCW radar. Chin J Radio Sci (in Chinese), 2005, 20(6): 815–818

    Google Scholar 

  34. Zhang R Q, Li Z, Yang J Y, et al. A method for LFMCW radar’s multi-target acceleration and velocity estimation. Telecommun Engin (in Chinese), 2005, 6: 17–20

    Google Scholar 

  35. Hu G S. Modern Signal Processing Tutorial. Beijing: Tsinghua University Press, 2004. 31–35

    Google Scholar 

  36. Li C N, Hu G R, Liu M J. Narrow-band interference excision in spread-spectrum systems using self-orthogonalizing transform-domain adaptive filters. IEEE J Sel, 2000, 18(3): 403–406

    Article  Google Scholar 

  37. Glisic S G, Get A. Rejection of frequency sweeping signal in DS spread spectrum systems using complex adaptive filters. IEEE Commun, 1999, 43(1): 136–145

    Article  Google Scholar 

  38. Tao R, Qin L, Wang Y. Theory Application of the Fractional Fourier Transaction Form (in Chinese). Beijing: Tsinghua University Press, 2004. 111–134

    Google Scholar 

  39. High Mathematics Staff Room of Xi’an Jiaotong University. Complex Function (in Chinese). Beijing: Higher Education Press, 1996. 117–118

  40. Mathematics staff room of Tongji University. High Mathematics (in Chinese). Beijing: Higher Education Press, 1996. 277–278

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenChao Du.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 60541001)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, W., Wang, G. & Gao, X. New method to extract radial acceleration of target from short-duration signal at low SNR. Sci. China Ser. E-Technol. Sci. 51, 556–575 (2008). https://doi.org/10.1007/s11431-008-0046-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-008-0046-4

Keywords

Navigation