Skip to main content
Log in

Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (CNTs) were grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition method, and the structural and capacitive humidity sensing properties of CNT/Si-NPA were studied. It was found that with the relative humidity (RH) changing from 11% to 95%, a device response of ∼480% was achieved at the frequency of 50000 Hz, and a linear device response curve could be obtained by adopting longitudinal logarithmic coordinate. The response/recovery times were measured to be ∼20 s and ∼10 s, respectively, which indicated a rather fast response/recovery rate. The adsorption-desorption dynamic cycle experiments demonstrated the high measurement reproducibility of CNT/Si-NPA sensors. These excellent performances were attributed to the unique surface structure, morphology and chemical inertness of CNT/Si-NPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Valentini L, Armentano I, Kenny J M, et al. Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films. Appl Phys Lett, 2003, 82: 961–963

    Article  Google Scholar 

  2. Lawrence N S, Deo R P, Wang J. Electrochemical determination of hydrogen sulfide at carbon nanotube modified electrodes. Anal Chim Acta, 2004, 517: 131–137

    Article  Google Scholar 

  3. Jang Y-T, Moon S-I, Ahn J-H, et al. A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes. Sens Actuat B, 2004, 99: 118–122

    Article  Google Scholar 

  4. Kong J, Franklin N R, Zhou C, et al. Nanotube molecular wires as chemical sensors. Science, 2000, 287: 622–625

    Article  Google Scholar 

  5. Cantalini C, Valentini L, Armentano I, et al. Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotube thin film prepared by PECVD. Sens Actuat B, 2003, 95: 195–202

    Article  Google Scholar 

  6. Varghese O K, Kichambre P D, Gong D, et al. Gas sensing characteristics of multi-wall carbon nanotubes. Sens Actuat B, 2001, 81: 32–41

    Article  Google Scholar 

  7. Li X J, Hu X, Jia Y, et al. Tunable superstructures in hydrothermally etched iron-passivated porous silicon. Appl Phys Lett, 1999, 75: 2906–2908

    Article  Google Scholar 

  8. Xu H J, Fu X N, Sun X R, et al. Investigations on the structural and optical properties of silicon nanoporous pillar array. Acta Phys Sin, 2005, 54: 2352–2357

    Google Scholar 

  9. Xu Y Y, Li X J, He J T, et al. Capacitive humidity sensing properties of hydrothermally-etched silicon nano-porous pillar array. Sens Actuat B, 2005, 105: 219–222

    Article  Google Scholar 

  10. Das J, Hossain S M, Chakraborty S, et al. Role of parasitics in humidity sensing by porous silicon. Sens Actuat A, 2001, 94: 44–52

    Article  Google Scholar 

  11. Kumar B P, Kumar H H, Kharat D K. Effect of porousity on dielectric properties and microstructure of porous PZT ceramics. Mater Sci Eng B, 2006, 127: 130–133

    Article  Google Scholar 

  12. Viviani M, Buscaglia M T, Buscaglia V, et al. Barium perovskites as humiity sensing materials. J Europ Ceram Soc, 2001, 21: 1981–1984

    Article  Google Scholar 

  13. Kim S J, Park J Y, Lee S H, et al. Humidity sensors using porous siicon layer with mesa structure. J Phys D, 2000, 33: 1781–1784

    Article  Google Scholar 

  14. Zahab A, Spina L, Poncharal P, et al. Water-wapor effect on the electrical conductivity of a single-walled carbon nanotube mat. Phys Rev B, 2000, 62: 10000–10003

    Article  Google Scholar 

  15. Na P S, Kim H, So H-M, et al. Investigation of the humidity effect on the electrical properties of single-walled carbon nanotube transistors. Appl Phys Lett, 2005, 87: 093101

    Google Scholar 

  16. Halimaoui A. Influence of wettability on anodic bias induced electroluminescence in porous silicon. Appl Phys Lett, 1993, 63(9): 1264–1266

    Article  Google Scholar 

  17. Salonen J, Björkqvist M, Laine E, et al. Stabilization of porous silicon surface by thermal decomposition of acetylene. Appl Surf Sci, 2004, 225: 389–394

    Article  Google Scholar 

  18. Jin W J, Shen G L, Yu R Q. Organic solvent induced quenching of porous silicon photoluminescence. Spectrochim Acta Part A, 1998, 54: 1407–1414

    Article  Google Scholar 

  19. Valentini L, Armentano I, Kenny J M. Electrically switchable carbon nanotubes hydrophobic surfaces. Diam Relat Mater, 2005, 14: 121–124

    Article  Google Scholar 

  20. Musso S, Porro S, Rovere M, et al. Physical and mechanical properties of thick self-standing layers of multiwall carbon nanotubes. Diam Relat Mater, 2007, 16: 1174–1178

    Article  Google Scholar 

  21. Gogotsi Y, Naguib N, Libera J A. In situ chemical experiments in carbon nanotubes. Chem Phys Lett, 2002, 365: 354–360

    Article  Google Scholar 

  22. Connolly E J, O’Halloran G M, Pham H T M, et al. Comparison of porous silicon, porous polysilicon and porous silicon carbide as materials for humidity sensing applications. Sens Actuat A, 2002, 99: 25–30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li XinJian.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10574112)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Xiao, S., Zhang, H. et al. Capacitive humidity sensing properties of carbon nanotubes grown on silicon nanoporous pillar array. SCI CHINA SER E 50, 510–515 (2007). https://doi.org/10.1007/s11431-007-0060-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-007-0060-y

Keywords

Navigation