Abstract
China announced its national goal to reach the peak of carbon emission by 2030 and achieve carbon neutrality by 2060, during the General Assembly of the United Nations in September 2020. In this context, the potential of the carbon sink in China’s terrestrial ecosystems to mitigate anthropogenic carbon emissions has attracted unprecedented attention from scientific communities, policy makers and the public. Here, we reviewed the assessments on China’s terrestrial ecosystem carbon sink, with focus on the principles, frameworks and methods of terrestrial ecosystem carbon sink estimates, as well as the recent progress and existing problems. Looking forward, we identified critical issues for improving the accuracy and precision of China’s terrestrial ecosystem carbon sink, in order to serve the more realistic policy making in pathways to achieve carbon neutrality for China.
Similar content being viewed by others
References
Basu S, Lehman S J, Miller J B, Andrews A E, Sweeney C, Gurney K R, Xu X, Southon J, Tans P P. 2020. Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2. Proc Natl Acad Sci USA, 117: 13300–13307
Bonan G B, Doney S C. 2018. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science, 359: eaam8328
Bousquet P, Peylin P, Ciais P, Le Quere C, Friedlingstein P, Tans P P. 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 290: 1342–1346
Campbell J E, Berry J A, Seibt U, Smith S J, Montzka S A, Launois T, Belviso S, Bopp L, Laine M. 2017. Large historical growth in global terrestrial gross primary production. Nature, 544: 84–87
Chen B, Zhang H, Wang T, Zhang X. 2021. An atmospheric perspective on the carbon budgets of terrestrial ecosystems in China: Progress and challenges. Sci Bull, 66: 1713–1718
Chen C, Park T, Wang X, Piao S, Xu B, Chaturvedi R K, Fuchs R, Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu Z, Nemani R R, Myneni R B. 2019. China and India lead in greening of the world through land-use management. Nat Sustain, 2: 122–129
Chen H, Yang G, Peng C, Zhang Y, Zhu D, Zhu Q, Hu J, Wang M, Zhan W, Zhu E, Bai Z, Li W, Wu N, Wang Y, Gao Y, Tian J, Kang X, Zhao X, Wu J. 2014. The carbon stock of alpine peatlands on the Qinghai-Tibetan Plateau during the Holocene and their future fate. Quat Sci Rev, 95: 151–158
Chevallier F, Remaud M, O’Dell C W, Baker D, Peylin P, Cozic A. 2019. Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmos Chem Phys, 19: 14233–14251
Ciais P, Borges A V, Abril G, Meybeck M, Folberth G, Hauglustaine D, Janssens I A. 2006. The impact of lateral carbon fluxes on the European carbon balance. Biogeosciences, 5: 1259–1271
Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend A D, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J M, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J F, Sanz M J, Schulze E D, Vesala T, Valentini R. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437: 529–533
Ciais P, Yao Y, Gasser T, Baccini A, Wang Y, Lauerwald R, Peng S, Bastos A, Li W, Raymond P A, Canadell J G, Peters G P, Andres R J, Chang J, Yue C, Dolman A J, Haverd V, Hartmann J, Laruelle G, Konings A G, King A W, Liu Y, Luyssaert S, Maignan F, Patra P K, Peregon A, Regnier P, Pongratz J, Poulter B, Shvidenko A, Valentini R, Wang R, Broquet G, Yin Y, Zscheischler J, Guenet B, Goll D S, Ballantyne A P, Yang H, Qiu C, Zhu D. 2021. Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. Natl Sci Rev, 8: nwaa145
Ding J Z, Wang T, Piao S L, Smith P, Zhang G L, Yan Z J, Ren S, Liu D, Wang S P, Chen S Y, Dai F Q, He J S, Li Y N, Liu Y W, Mao J F, Arain A, Tian H Q, Shi X Y, Yang Y H, Zeng N, Zhao L. 2019. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nat Commun, 10: 4195
Dixon R K, Solomon A M, Brown S, Houghton R A, Trexier M C, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science, 263: 185–190
Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P. 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science, 282: 442–446
Fang J, Chen A, Peng C, Zhao S, Ci L. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292: 2320–2322
Fang J Y, Chen A P, Peng C H, Zhao S Q, Ci L J. 2018. Climate change, human impacts, and carbon sequestration in China. Proc Natl Acad Sci USA, 115: 4015–4020
Field C B, Fung I Y. 1999. The not-so-big U.S. carbon sink. Science, 285: 544–545
Fisher R A, Koven C D. 2020. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J Adv Model Earth Syst, 12: e2018MS001453
Friedlingstein P, O’Sullivan M, Jones M W, Andrew R M, Hauck J, Olsen A, Peters G P, Peters W, Pongratz J, Sitch S, Le Quéré C, Canadell J G, Ciais P, Jackson R B, Alin S, Aragão L E O C, Arneth A, Arora V, Bates N R, Becker M, Benoit-Cattin A, Bittig H C, Bopp L, Bultan S, Chandra N, Chevallier F, Chini L P, Evans W, Florentie L, Forster P M, Gasser T, Gehlen M, Gilfillan D, Gkritzalis T, Gregor L, Gruber N, Harris I, Hartung K, Haverd V, Houghton R A, Ilyina T, Jain A K, Joetzjer E, Kadono K, Kato E, Kitidis V, Korsbakken J I, Landschützer P, Lefèvre N, Lenton A, Lienert S, Liu Z, Lombardozzi D, Marland G, Metzl N, Munro D R, Nabel J E M S, Nakaoka S I, Niwa Y, O’Brien K, Ono T, Palmer P I, Pierrot D, Poulter B, Resplandy L, Robertson E, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Smith A J P, Sutton A J, Tanhua T, Tans P P, Tian H, Tilbrook B, van der Werf G, Vuichard N, Walker A P, Wanninkhof R, Watson A J, Willis D, Wiltshire A J, Yuan W, Yue X, Zaehle S. 2020. Global carbon budget 2020. Earth Syst Sci Data, 12: 3269–3340
Fu B J. 2018. Thoughts on the recent development of physical geography (in Chinese). Prog Geog, 37: 1–7
Gurney K R, Law R M, Denning A S, Rayner P J, Baker D, Bousquet P, Bruhwiler L, Chen Y H, Ciais P, Fan S, Fung I Y, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak B C, Randerson J, Sarmiento J, Taguchi S, Takahashi T, Yuen C W. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415: 626–630
He H L, Wang S Q, Zhang L, Wang J B, Ren X L, Zhou L, Piao S L, Yan H, Ju W M, Gu F X, Yu S Y, Yang Y H, Wang M M, Niu Z G, Ge R, Yan H M, Huang M, Zhou G Y, Bai Y F, Xie Z Q, Tang Z Y, Wu B F, Zhang L M, He N P, Wang Q F, Yu G R. 2019. Altered trends in carbon uptake in China’s terrestrial ecosystems under the enhanced summer monsoon and warming hiatus. Natl Sci Rev, 6: 505–514
Holland E A, Brown S, Potter C S, Fan S A K, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P. 1999. North American carbon sink. Science, 283: 1815
Hong S B, Yin G D, Piao S L, Dybzinski R, Cong N, Li X Y, Wang K, Penuelas J, Zeng H, Chen A P. 2020. Divergent responses of soil organic carbon to afforestation. Nat Sustain, 3: 694–700
Houghton R A, Hackler J L, Lawrence K T. 1999. The US carbon budget: Contributions from land-use change. Science, 285: 574–578
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
Janssens I A, Freibauer A, Ciais P, Smith P, Nabuurs G J, Folberth G, Schlamadinger B, Hutjes R W A, Ceulemans R, Schulze E D, Valentini R, Dolman A J. 2003. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science, 300: 1538–1542
Jiang F, Chen J M, Zhou L X, Ju W M, Zhang H F, Machida T, Ciais P, Peters W, Wang H M, Chen B Z, Liu L X, Zhang C H, Matsueda H, Sawa Y. 2016. A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Sci Rep, 6: 22130
Jung M, Reichstein M, Margolis H A, Cescatti A, Richardson A D, Arain M A, Arneth A, Bernhofer C, Bonal D, Chen J, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law B E, Lindroth A, Merbold L, Montagnani L, Moors E J, Papale D, Sottocornola M, Vaccari F, Williams C. 2011. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res, 116: G00J07
Keeling R F, Graven H D, Welp L R, Resplandy L, Bi J, Piper S C, Sun Y, Bollenbacher A, Meijer H A J. 2017. Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proc Natl Acad Sci USA, 114: 10361–10366
King A W, Andres R J, Davis K J, Hafer M, Hayes D J, Huntzinger D N, de Jong B, Kurz W A, McGuire A D, Vargas R, Wei Y, West T O, Woodall C W. 2015. North America’s net terrestrial CO2 exchange with the atmosphere 1990–2009. Biogeosciences, 12: 399–414
Le Quéré C, Andrew R M, Friedlingstein P, Sitch S, Pongratz J, Manning A C, Ivar Korsbakken J, Peters G P, Canadell J G, Jackson R B, Boden T A, Tans P P, Andrews O D, Arora V K, Bakker D C E, Barbero L, Becker M, Betts R A, Bopp L, Chevallier F, Chini L P, Ciais P, Cosca C E, Cross J, Currie K, Gasser T, Harris I, Hauck J, Haverd V, Houghton R A, Hunt C W, Hurtt G, Ilyina T, Jain A K, Kato E, Kautz M, Keeling R F, Klein Goldewijk K, Körtzinger A, Landschützer P, Lefèvre N, Lenton A, Lienert S, Lima I, Lombardozzi D, Metzl N, Millero F, Monteiro P M S, Munro D R, Nabel J E M S, Nakaoka S I, Nojiri Y, Antonio Padin X, Peregon A, Pfeil B, Pierrot D, Poulter B, Rehder G, Reimer J, Rödenbeck C, Schwinger J, Séférian R, Skjelvan I, Stocker B D, Tian H, Tilbrook B, Tubiello F N, Laan-Luijkx I T V, Werf G R V, Van Heuven S, Viovy N, Vuichard N, Walker AP, Watson A J, Wiltshire A J, Zaehle S, Zhu D. 2018. Global carbon budget 2017. Earth Syst Sci Data, 10: 405–448
Li Y, Wang Y G, Houghton R A, Tang L S. 2015. Hidden carbon sink beneath desert. Geophys Res Lett, 42: 5880–5887
Lu F, Hu H, Sun W, Zhu J, Liu G, Zhou W, Zhang Q, Shi P, Liu X, Wu X, Zhang L, Wei X, Dai L, Zhang K, Sun Y, Xue S, Zhang W, Xiong D, Deng L, Liu B, Zhou L, Zhang C, Zheng X, Cao J, Huang Y, He N, Zhou G, Bai Y, Xie Z, Tang Z, Wu B, Fang J, Liu G, Yu G. 2018. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc Natl Acad Sci USA, 115: 4039–4044
Pacala S W, Hurtt G C, Baker D, Peylin P, Houghton R A, Birdsey R A, Heath L, Sundquist E T, Stallard R F, Ciais P, Moorcroft P, Caspersen J P, Shevliakova E, Moore B, Kohlmaier G, Holland E, Gloor M, Harmon M E, Fan S M, Sarmiento J L, Goodale C L, Schimel D, Field C B. 2001. Consistent land- and atmosphere-based US carbon sink estimates. Science, 292: 2316–2320
Pan Y D, Birdsey R A, Fang J Y, Houghton R, Kauppi P E, Kurz W A, Phillips O L, Shvidenko A, Lewis S L, Josep G, Ciais P, Jackson R B, Pacala S, Mcguire A D, Rautiainen A, Sitch S, Hayes D. 2011. A large and persistent carbon sink in the world’s forests. Science, 333: 988–993
Peylin P, Law R M, Gurney K R, Chevallier F, Jacobson A R, Maki T, Niwa Y, Patra P K, Peters W, Rayner P J, Rödenbeck C, van der Laan-Luijkx I T, Zhang X. 2013. Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences, 10: 6699–6720
Piao S L, Fang J Y, Ciais P, Peylin P, Huang Y, Sitch S, Wang T. 2009. The carbon balance of terrestrial ecosystems in China. Nature, 458: 1009–1013
Piao S L, Huang M T, Liu Z, Wang X H, Ciais P, Canadell J G, Wang K, Bastos A, Friedlingstein P, Houghton R A, Le Q C, Liu Y, Myneni R B, Peng S S, Pongratz J, Sitch S, Yan T, Wang Y, Zhu Z C, Wu D H, Wang T. 2018. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat Geosci, 11: 739–743
Piao S L, Liu Z, Wang T, Peng S S, Ciais P, Huang M T, Ahlstrom A, Burkhart J F, Chevallier F, Janssens I A, Jeong S J, Lin X, Mao J F, Miller J, Mohammat A, Myneni R B, Peñuelas J, Shi X Y, Stohl A, Yao Y T, Zhu Z C, Tans P P. 2017. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat Clim Change, 7: 359–363
Piao S L, Wang X H, Park T, Chen C, Lian X, He Y, Bjerke J W, Chen A P, Ciais P, Tømmervik H, Nemani R R, Myneni R B. 2020a. Characteristics, drivers and feedbacks of global greening. Nat Rev Earth Environ, 1: 14–27
Piao S L, Wang X H, Wang K, Li X Y, Bastos A, Canadell J G, Ciais P, Friedlingstein P, Sitch S. 2020b. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob Change Biol, 26: 300–318
Piao S, Zhang X, Chen A, Liu Q, Lian X, Wang X, Peng S, Wu X. 2019. The impacts of climate extremes on the terrestrial carbon cycle: A review. Sci China Earth Sci, 62: 1551–1563
Pugh T A M, Lindeskog M, Smith B, Poulter B, Arneth A, Haverd V, Calle L. 2019. Role of forest regrowth in global carbon sink dynamics. Proc Natl Acad Sci USA, 116: 4382–4387
Raza S, Miao N, Wang P, Ju X, Chen Z, Zhou J, Kuzyakov Y. 2020. Dramatic loss of inorganic carbon by nitrogen-induced soil acidification in Chinese croplands. Glob Change Biol, 26: 3738–3751
Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, Andersson A J, Arndt S, Arnosti C, Borges A V, Dale A W, Gallego-Sala A, Goddéris Y, Goossens N, Hartmann J, Heinze C, Ilyina T, Joos F, LaRowe D E, Leifeld J, Meysman F J R, Munhoven G, Raymond P A, Spahni R, Suntharalingam P, Thullner M. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci, 6: 597–607
Reuter M, Buchwitz M, Hilker M, Heymann J, Bovensmann H, Burrows J P, Houweling S, Liu Y Y, Nassar R, Chevallier F, Ciais P, Marshall J, Reichstein M. 2017. How much CO2 is taken up by the European terrestrial biosphere? Bull Am Meteorol Soc, 98: 665–671
Schewe J, Gosling S N, Reyer C, Zhao F, Ciais P, Elliott J, Francois L, Huber V, Lotze H K, Seneviratne S I, van Vliet M T H, Vautard R, Wada Y, Breuer L, Büchner M, Carozza D A, Chang J, Coll M, Deryng D, de Wit A, Eddy T D, Folberth C, Frieler K, Friend A D, Gerten D, Gudmundsson L, Hanasaki N, Ito A, Khabarov N, Kim H, Lawrence P, Morfopoulos C, Müller C, Müller Schmied H, Orth R, Ostberg S, Pokhrel Y, Pugh T A M, Sakurai G, Satoh Y, Schmid E, Stacke T, Steenbeek J, Steinkamp J, Tang Q, Tian H, Tittensor D P, Volkholz J, Wang X, Warszawski L. 2019. State-of-the-art global models underestimate impacts from climate extremes. Nat Commun, 10: 1005
Sitch S, Huntingford C, Gedney N, Levy P E, Lomas M, Piao S L, Betts R, Ciais P, Cox P, Friedlingstein P, Jones C D, Prentice I C, Woodward F I. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob Change Biol, 14: 2015–2039
Song X D, Yang F, Wu H Y, Zhang J, Li D C, Liu F, Zhao Y G, Yang J L, Ju B, Cai C F, Huang B, Long H Y, Lu Y, Sui Y Y, Wang Q B, Wu K N, Zhang F R, Zhang M K, Shi Z, Ma W Z, Xin G, Qi Z P, Chang Q R, Ci E, Yuan D G, Zhang Y Z, Bai J P, Chen J Y, Chen J, Chen Y J, Dong Y Z, Han C L, Li L, Liu L M, Pan J J, Song F P, Sun F J, Wang D F, Wang T W, Wei X H, Wu H Q, Zhao X, Zhou Q, Zhang G L. 2022. Significant loss of soil inorganic carbon at the continental scale. Natl Sci Rev, 9: nwab120
Stephens B B, Gurney K R, Tans P P, Sweeney C, Peters W, Bruhwiler L, Ciais P, Ramonet M, Bousquet P, Nakazawa T, Aoki S, Machida T, Inoue G, Vinnichenko N, Lloyd J, Jordan A, Heimann M, Shibistova O, Langenfelds R L, Steele L P, Francey R J, Denning A S. 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science, 316: 1732–1735
Sun J, Liu M, Fu B J, Kemp D, Zhao W W, Liu G H, Han G D, Wilkes A, Lu X Y, Chen Y C, Cheng G W, Zhou T C, Hou G, Zhan T Y, Peng F, Shang H, Xu M, Shi P L, He Y T, Li M, Wang J N, Tsunekawa A, Zhou H K, Liu Y, Li Y R, Liu S L. 2020. Reconsidering the efficiency of grazing exclusion using fences on the Tibetan Plateau. Sci Bull, 65: 1405–1414
Tian H, Melillo J, Lu C, Kicklighter D, Liu M, Ren W, Xu X, Chen G, Zhang C, Pan S, Liu J, Running S. 2011. China’s terrestrial carbon balance: Contributions from multiple global change factors. Glob Biogeochem Cycle, 25: GB1007
Tramontana G, Jung M, Schwalm C R, Ichii K, Camps-Valls G, Ráduly B, Reichstein M, Arain M A, Cescatti A, Kiely G, Merbold L, Serrano-Ortiz P, Sickert S, Wolf S, Papale D. 2016. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences, 13: 4291–4313
Wang J, Feng L, Palmer P I, Liu Y, Fang S, Bösch H, O’Dell C W, Tang X, Yang D, Liu L, Xia C Z. 2020. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature, 586: 720–723
Wang Q F, Zheng H, Zhu X J, Yu G R. 2015. Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010. Sci Bull, 60: 577–590
Wang T H, Yang D W, Yang Y T, Piao S L, Li X, Cheng G D, Fu B J. 2020. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci Adv, 6: eaaz3513
Wang Y L, Wang X H, Wang K, Chevallier F, Zhu D, Lian J H, He Y, Tian H Q, Li J S, Zhu J X, Jeong S, Canadell J. 2021. The size of land carbon sink in China. Nature, doi: https://doi.org/10.1038/s41586-021-04255-y
Yao Y T, Li Z J, Wang T, Chen A P, Wang X H, Du M Y, Jia G S, Li Y N, Li H Q, Luo W J, Ma Y M, Tang Y H, Wang H M, Wu Z X, Yan J H, Zhang X Z, Zhang Y P, Zhang Y, Zhou G S, Piao S L. 2018a. A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agric For Meteorol, 253–254: 84–93
Yao Y T, Piao S L, Wang T. 2018b. Future biomass carbon sequestration capacity of Chinese forests. Sci Bull, 63: 1108–1117
Yu G R, Chen Z, Piao S L, Peng C H, Ciais P, Wang Q F, Li X R, Zhu X J. 2014a. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci USA, 111: 4910–4915
Yu G R, Zhang L M, Sun X M. 2014b. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (China-FLUX) (in Chinese). Prog Geog, 33: 903–917
Zhang H F, Chen B Z, van der Laan-Luijkx I T, Chen J, Xu G, Yan J W, Zhou L X, Fukuyama Y, Tans P P, Peters W. 2014. Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO2. J Geophys Res-Atmos, 119: 3500–3515
Zhang Y, Yao Y T, Wang X H, Liu Y W, Piao S L. 2017. Mapping spatial distribution of forest age in China. Earth Space Sci, 4: 108–116
Acknowledgements
We thank Dr. Yongwen LIU and Dr. Yilong WANG for their help in the writing process. This work was supported by the National Natural Science Foundation of China (Grant No. 41988101) and National Key R&D Program of China (Grant No. 2019YFA0607304).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Piao, S., He, Y., Wang, X. et al. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Sci. China Earth Sci. 65, 641–651 (2022). https://doi.org/10.1007/s11430-021-9892-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11430-021-9892-6