Skip to main content
Log in

Evaluation of the four potential Cretaceous-Paleogene (K-Pg) boundaries in the Nanxiong Basin based on evidences from volcanic activity and paleoclimatic evolution

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Determining the location of the Cretaceous-Paleogene (K-Pg) boundary in terrestrial strata is highly significant for studying the evolution of terrestrial ecosystems at the end of the Cretaceous (especially the extinction of non-avian dinosaurs). At present, research on terrestrial K-Pg boundaries worldwide is concentrated in the middle and high latitudes, such as North America and Northeast China. Although many studies have also been carried out in the Nanxiong Basin, located at low latitudes (which has become the standard for dividing and comparing the continental K-Pg stratigraphy in China), many researchers have proposed four possible boundaries from different perspectives. Therefore, the exact location remains to be determined. In this study, the total mercury (Hg) content, environmental magnetism, geochemistry, and other parameters for the samples collected near the four boundaries were determined and compared with existing records. Results indicated that: 1) The total Hg content significantly increased in the upper part of the Zhenshui Formation and Pingling part of the Shanghu Formation with sharp fluctuations. As per latest dating results of Deccan Traps, the significantly high Hg value was attributed to the Deccan Traps eruption. Boundary 1 was located in the middle of the Hg anomaly interval, which was consistent with the relationship between the global K-Pg boundary and time of volcanic eruption. 2) The reconstructed paleoclimate evolution curve revealed that the red sediments in the basin recorded the late Maastrichtian warming event (66.2 Ma). Regarding the relationship between the four boundaries and this warming event, only boundary 1 was found to be closest to the real K-Pg boundary of the Nanxiong Basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramovich S, Keller G, Stüben D, Berner Z. 2003. Characterization of late Campanian and Maastrichtian planktonic foraminiferal depth habitats and vital activities based on stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol, 202: 1–29

    Article  Google Scholar 

  • Bagnato E, Aiuppa A, Parello F, Allard P, Shinohara H, Liuzzo M, Giudice G. 2011. New clues on the contribution of Earth’s volcanism to the global mercury cycle. Bull Volcanol, 73: 497–510

    Article  Google Scholar 

  • Buck B J, Hanson A D, Hengst R A, Shu-sheng H. 2004. “Tertiary Dinosaurs” in the Nanxiong Basin, Southern China, Are Reworked from the Cretaceous. J Geol, 112: 111–118

    Article  Google Scholar 

  • Cerling T E, Quade J, Wang Y, Bowman J R. 1989. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators. Nature, 341: 138–139

    Article  Google Scholar 

  • Cerling T E, Quade J. 1993. Stable carbon isotopes in soil carbonates. In: Swart P K, Lohmann K C, McKenzie J, Savin S, eds. Climate Change in Continental Isotopic Records. Washington DC: American Geophysical Union

    Google Scholar 

  • Clyde W C, Ting S, Snell K E, Bowen G J, Tong Y, Koch P L, Li Q, Wang Y. 2010. New paleomagnetic and stable-isotope results from the Nanxiong Basin, China: Implications for the K/T boundary and the timing of Paleocene mammalian turnover. J Geol, 118: 131–143

    Article  Google Scholar 

  • Coccioni R, Frontalini F, Bancalà G, Fornaciari E, Jovane L, Sprovieri M. 2010. The Dan-C2 hyperthermal event at Gubbio (Italy): Global implications, environmental effects, and cause(s). Earth Planet Sci Lett, 297: 298–305

    Article  Google Scholar 

  • Erben H K, Ashraf A R, Bohm H, Hambach U, Krumsiek K, Stets J, Thein J, Wurster P. 1995. Die Kreide/Tertiar-Grenze im Nanxiong-Becken (Kontinentalfazies, Sudostchina). Erdwissenschaftliche Forschung, 32: 1–245

    Google Scholar 

  • Font E, Adatte T, Sial A N, Drude de Lacerda L, Keller G, Punekar J. 2016. Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction. Geology, 44: 171–174

    Article  Google Scholar 

  • Font E, Adatte T, Andrade M, Keller G, Mbabi Bitchong A, Carvallo C, Ferreira J, Diogo Z, Mirão J. 2018. Deccan volcanism induced high-stress environment during the Cretaceous-Paleogene transition at Zumaia, Spain: Evidence from magnetic, mineralogical and biostratigraphic records. Earth Planet Sci Lett, 484: 53–66

    Article  Google Scholar 

  • Gao Y, Ibarra D E, Wang C, Caves J K, Chamberlain C P, Graham S A, Wu H. 2015. Mid-latitude terrestrial climate of East Asia linked to global climate in the Late Cretaceous. Geology, 43: 287–290

    Article  Google Scholar 

  • Grasby S E, Beauchamp B, Bond D P G, Wignall P, Talavera C, Galloway J M, Piepjohn K, Reinhardt L, Blomeier D. 2015. Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Geol Soc Am Bull, 127: 1331–1347

    Article  Google Scholar 

  • Grasby S E, Them II T R, Chen Z, Yin R, Ardakani O H. 2019. Mercury as a proxy for volcanic emissions in the geologic record. Earth-Sci Rev, 196: 102880

    Article  Google Scholar 

  • Hull P M, Bornemann A, Penman D E, Henehan M J, Norris R D, Wilson P A, Blum P, Alegret L, Batenburg S J, Bown P R, Bralower T J, Cournede C, Deutsch A, Donner B, Friedrich O, Jehle S, Kim H, Kroon D, Lippert P C, Loroch D, Moebius I, Moriya K, Peppe D J, Ravizza G E, Röhl U, Schueth J D, Sepúlveda J, Sexton P F, Sibert E C, Śliwińska K K, Summons R E, Thomas E, Westerhold T, Whiteside J H, Yamaguchi T, Zachos J C. 2020. On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 367: 266–272

    Article  Google Scholar 

  • Jiang X J, Liu Y Q, Ji S A, Zhang X L, Xu L, Jia S H, Lü J C, Yuan C X, Li M. 2011. Dinosaur-bearing strata and K/T boundary in the Luanchuan-Tantou Basin of western Henan Province, China. Sci China Earth Sci, 54: 1149–1155

    Article  Google Scholar 

  • Keller G. 2011. Defining the Cretaceous-Tertiary boundary: A practical guide and return to first principles. SEPM Spec Publ, 100: 23–42

    Google Scholar 

  • Keller G, Mateo P, Punekar J, Khozyem H, Gertsch B, Spangenberg J, Bitchong A M, Adatte T. 2018. Environmental changes during the Cretaceous-Paleogene mass extinction and Paleocene-Eocene Thermal Maximum: Implications for the Anthropocene. Gondwana Res, 56: 69–89

    Article  Google Scholar 

  • Keller G, Mateo P, Monkenbusch J, Thibault N, Punekar J, Spangenberg J E, Abramovich S, Ashckenazi-Polivoda S, Schoene B, Eddy M P, Samperton K M, Khadri S F R, Adatte T. 2020. Mercury linked to Deccan Traps volcanism, climate change and the end-Cretaceous mass extinction. Glob Planet Change, 194: 103312

    Article  Google Scholar 

  • Li G, Hirano H, Batten D J, Wan X, Willems H, Zhang X. 2010. Biostratigraphic significance of spinicaudatans from the Upper Cretaceous Nanxiong Group in Guangdong, South China. Cretac Res, 31: 387–395

    Article  Google Scholar 

  • Li L, Keller G. 1998. Abrupt deep-sea warming at the end of the Cretaceous. Geology, 26: 995–998

    Article  Google Scholar 

  • Li S, Gao Q Q, Zhang Y Y, Qu H Y, Wang M Y, Wan X Q. 2013. Late late Cretaceous-early Paleocene charophytes form the Songliao basin, North China: SK1(N) core (in Chinese with English abstract). Acta Micropalaeontol Sin, 30: 1–16

    Google Scholar 

  • Li W T, Liu G W, Braman D R, Cao W S, Chen Q B, Brinkman D. 2010. A proposal to further investigate the Cretaceous-Paleogene boundary section at Danyang Hubei Province (in Chinese with English abstract). J Stratigr, 34: 187–206

    Google Scholar 

  • Li W T, Liu G W, Braman D R, Li Y B, Cao W S, Brinkman D, Shen J, Chen Q B. 2014. A potential stratotype for the regional lowermost stage of the continental Paleocene in China. Sci China Earth Sci, 57: 1109–1116

    Article  Google Scholar 

  • Li X, Xu W, Liu W, Zhou Y, Wang Y, Sun Y, Liu L. 2013. Climatic and environmental indications of carbon and oxygen isotopes from the Lower Cretaceous calcrete and lacustrine carbonates in Southeast and Northwest China. Palaeogeogr Palaeoclimatol Palaeoecol, 385: 171–189

    Article  Google Scholar 

  • Li X, Zhang C, Li Y, Wang Y, Liu L. 2019. Refined chronostratigraphy of the late Mesozoic terrestrial strata in South China and its tectono-stratigraphic evolution. Gondwana Res, 66: 143–167

    Article  Google Scholar 

  • Liu G W, Braman D R, Li W T, Brinkman D. 2009. Palynostratigraphic charateristics of Cretaceous-Paleogene boundary of Western North America and review on searching for Cretaceous-Paleogene boundary in Eastern China (in Chinese with English abstract). J Stratigr, 33: 18–34

    Google Scholar 

  • Ling Q X, Zhang X Q, Lin J N. 2005. New advance in the study of the Cretaceous and Paleogene strata of the Nanxiong Basin (in Chinese with English abstract). J Stratigr, 29(Suppl): 596–601

    Google Scholar 

  • Ma M, Liu X, Wang W. 2018. Palaeoclimate evolution across the Cretaceous-Palaeogene boundary in the Nanxiong Basin (SE China) recorded by red strata and its correlation with marine records. Clim Past, 14: 287–302

    Article  Google Scholar 

  • McLennan S M, Hemming S, McDaniel D K, Hanson G N. 1993. Processes controlling the composition of clastic sediments. Spec Pap Geol Soc Am, 284: 21–40

    Google Scholar 

  • Molina J M, Vera J A, Aguado R. 2006. Reworked microcodium calcarenites interbedded in pelagic sedimentary rocks (Paleocene, Subbetic, Southern Spain): Paleoenvironmental reconstruction. Spec Pap Geol Soc Am, 416: 189–202

    Google Scholar 

  • Nesbitt H W, Markovics G, Price R C. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim Cosmochim Acta, 44: 1659–1666

    Article  Google Scholar 

  • Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715–717

    Article  Google Scholar 

  • Nesbitt H W, Young G M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta, 48: 1523–1534

    Article  Google Scholar 

  • Nordt L, Atchley S, Dworkin S. 2003. Terrestrial evidence for two greenhouse events in the Latest Cretaceous. GSA Today, 13: 4–9

    Article  Google Scholar 

  • Pyle D M, Mather T A. 2003. The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ, 37: 5115–5124

    Article  Google Scholar 

  • Quade J, Rech J A, Latorre C, Betancourt J L, Gleeson E, Kalin M T K. 2007. Soils at the hyperarid margin: The isotopic composition of soil carbonate from the Atacama Desert, Northern Chile. Geochim Cosmochim Acta, 71: 3772–3795

    Article  Google Scholar 

  • Quillévéré F, Norris R D, Kroon D, Wilson P A. 2008. Transient ocean warming and shifts in carbon reservoirs during the early Danian. Earth Planet Sci Lett, 265: 600–615

    Article  Google Scholar 

  • Renne P R, Deino A L, Hilgen F J, Kuiper K F, Mark D F, Mitchell W S, Morgan L E, Mundil R, Smit J. 2013. Time scales of critical events around the Cretaceous-Paleogene boundary. Science, 339: 684–687

    Article  Google Scholar 

  • Schoene B, Eddy M P, Samperton K M, Keller C B, Keller G, Adatte T, Khadri S F R. 2019. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science, 363: 862–866

    Article  Google Scholar 

  • Schulte P, Alegret L, Arenillas I, Arz J A, Barton P J, Bown P R, Bralower T J, Christeson G L, Claeys P, Cockell C S, Collins G S, Deutsch A, Goldin T J, Goto K, Grajales-Nishimura J M, Grieve R A F, Gulick S P S, Johnson K R, Kiessling W, Koeberl C, Kring D A, Macleod K G, Matsui T, Melosh J, Montanari A, Morgan J V, Neal C R, Norris R D, Pierazzo E, Ravizza G, Rebolledo-Vieyra M, Reimold W U, Robin E, Salge T, Speijer R P, Sweet A R, Urrutia-Fucugauchi J, Vajda V, Whalen M T, Willumsen P S. 2010. Response-Cretaceous Extinctions. Science, 328: 975–976

    Article  Google Scholar 

  • Shen J, Algeo T J, Planavsky N J, Yu J, Feng Q, Song H, Song H, Rowe H, Zhou L, Chen J. 2019a. Mercury enrichments provide evidence of Early Triassic volcanism following the end-Permian mass extinction. Earth-Sci Rev, 195: 191–212

    Article  Google Scholar 

  • Shen J, Chen J, Algeo T J, Yuan S, Feng Q, Yu J, Zhou L, O’Connell B, Planavsky N J. 2019b. Evidence for a prolonged Permian-Triassic extinction interval from global marine mercury records. Nat Commun, 10: 1563

    Article  Google Scholar 

  • Shen J, Yu J, Chen J, Algeo T J, Xu G, Feng Q, Shi X, Planavsky N J, Shu W, Xie S. 2019c. Mercury evidence of intense volcanic effects on land during the Permian-Triassic transition. Geology, 47: 1117–1121

    Article  Google Scholar 

  • Shen J, Algeo T J, Chen J, Planavsky N J, Feng Q, Yu J, Liu J. 2019d. Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin. Earth Planet Sci Lett, 511: 130–140

    Article  Google Scholar 

  • Shen J, Feng Q, Algeo T J, Liu J, Zhou C, Wei W, Liu J, Them II T R, Gill B C, Chen J. 2020. Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy. Earth Planet Sci Lett, 543: 116333

    Article  Google Scholar 

  • Shu L, Deng P, Wang B, Tan Z, Yu X, Sun Y. 2004. Lithology, kinematics and geochronology related to Late Mesozoic basin-mountain evolution in the Nanxiong-Zhuguang area, South China. Sci China Ser D-Earth Sci, 47: 673–688

    Article  Google Scholar 

  • Sial A N, Lacerda L D, Ferreira V P, Frei R, Marquillas R A, Barbosa J A, Gaucher C, Windmöller C C, Pereira N S. 2013. Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous-Paleogene transition. Palaeogeogr Palaeoclimatol Palaeoecol, 387: 153–164

    Article  Google Scholar 

  • Sial A N, Chen J, Lacerda L D, Peralta S, Gaucher C, Frei R, Cirilli S, Ferreira V P, Marquillas R A, Barbosa J A, Pereira N S, Belmino I K C. 2014. High-resolution Hg chemostratigraphy: A contribution to the distinction of chemical fingerprints of the Deccan volcanism and Cretaceous-Paleogene Boundary impact event. Palaeogeogr Palaeoclimatol Palaeoecol, 414: 98–115

    Article  Google Scholar 

  • Sial A N, Chen J, Lacerda L D, Frei R, Tewari V C, Pandit M K, Gaucher C, Ferreira V P, Cirilli S, Peralta S, Korte C, Barbosa J A, Pereira N S. 2016. Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts. Cretac Res, 66: 60–81

    Article  Google Scholar 

  • Silva M V N, Sial A N, Barbosa J A, Ferreira V P, Neumann V H, De Lacerda L D. 2013. Carbon isotopes, rare-earth elements and mercury geochemistry across the K-T transition of the Paraíba Basin, north-eastern Brazil. Geol Soc London Spec Publ, 382: 85–104

    Article  Google Scholar 

  • Sprain C J, Renne P R, Vanderkluysen L, Pande K, Self S, Mittal T. 2019. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science, 363: 866–870

    Article  Google Scholar 

  • Stets J, Ashraf A, Erben H K, Hahn G, Hambach U, Krumsiek K, Thein J, Wurster P. 1996. The Cretaceous-Tertiary boundary in the Nanxiong Basin (continental facies, southeast China). In: MacLeod N, Keller G, eds. Cretaceous-Tertiary Mass Extinctions: Biotic and Environmental Changes. New York: Norton. 349–371

    Google Scholar 

  • Sun G. 2014. Late Cretaceous-Paleocene Biota, K-Pg Boundary and Dinosaur Extinction in Jiayin, Heilongjiang. Shanghai: Shanghai Scientific and Technological Education Publishing House. 188

    Google Scholar 

  • Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution. New York: Oxford. 312

    Google Scholar 

  • Thibault N, Gardin S. 2010. The calcareous nannofossil response to the end-Cretaceous warm event in the Tropical Pacific. Palaeogeogr Palaeoclimatol Palaeoecol, 291: 239–252

    Article  Google Scholar 

  • Thibault N, Galbrun B, Gardin S, Minoletti F, Le Callonnec L. 2015. The end-Cretaceous in the southwestern Tethys (Elles, Tunisia): Orbital calibration of paleoenvironmental events before the mass extinction. Int J Earth Sci-Geol Rundsch, 105: 771–795

    Article  Google Scholar 

  • Thompson R, Oldfield F. 1986. Environmental Magnetism. London: Allen and Unwin. 227

    Book  Google Scholar 

  • Tong Y S, Li M Y, Li Q. 2002. The Cretaceous-Paleogene boundary in the Nanxiong Basin, Guangdong Province (in Chinese with English abstract). Geol Bull China, 21: 668–674

    Google Scholar 

  • Tong Y S, Li Q, Wang Y Q. 2013. An introduction to recent advance in the study of the continental early Paleogene stages in China (in Chinese with English abstract). J Stratigr, 37: 428–440

    Google Scholar 

  • Wan X, Zhao J, Scott R W, Wang P, Feng Z, Huang Q, Xi D. 2013. Late Cretaceous stratigraphy, Songliao Basin, NE China: SK1 cores. Palaeogeogr Palaeoclimatol Palaeoecol, 385: 31–43

    Article  Google Scholar 

  • Wang C, Feng Z, Zhang L, Huang Y, Cao K, Wang P, Zhao B. 2013. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, northeast China. Palaeogeogr Palaeoclimatol Palaeoecol, 385: 17–30

    Article  Google Scholar 

  • Wang C. 2013. Environmental climate change in the Cretaceous greenhouse world: Records from Terrestrial scientific drilling of Songliao Basin and adjacent areas of China. Palaeogeogr Palaeoclimatol Palaeoecol, 385: 1–5

    Article  Google Scholar 

  • Wang Y. 2012. Paleoclimate changes of the late Cretaceous-early Paleocene in the Nangxiong basin, South China. Masteral Dissertation. Nanjing: Nanjing University

    Google Scholar 

  • Wang Y, Li X H, Zhou Y, Liu L. 2015. Paleoclimate indication of terrigenous clastic rock’s component during the late Cretaceous-early Paleocene in the Nangxiong Basin (in Chinese with English abstract). Acta Sedimentol Sin, 33: 116–123

    Google Scholar 

  • Westerhold T, Röhl U, Donner B, McCarren H K, Zachos J C. 2011. A complete high-resolution Paleocene benthic stable isotope record for the central Pacific (ODP Site 1209). Paleoceanography, 26: PA2216

    Article  Google Scholar 

  • Wilf P, Johnson K R, Huber B T. 2003. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary. Proc Natl Acad Sci USA, 100: 599–604

    Article  Google Scholar 

  • Witt M L I, Mather T A, Pyle D M, Aiuppa A, Bagnato E, Tsanev V I. 2008. Mercury and halogen emissions from Masaya and Telica volcanoes, Nicaragua. J Geophys Res, 113: B06203

    Google Scholar 

  • Woelders L, Vellekoop J, Kroon D, Smit J, Casadío S, Prámparo M B, Dinarès-Turell J, Peterse F, Sluijs A, Lenaerts J T M, Speijer R P. 2017. Latest Cretaceous climatic and environmental change in the South Atlantic region. Paleoceanography, 32: 466–483

    Article  Google Scholar 

  • Woelders L, Vellekoop J, Weltje G J, de Nooijer L, Reichart G J, Peterse F, Claeys P, Speijer R P. 2018. Robust multi-proxy data integration, using late Cretaceous paleotemperature records as a case study. Earth Planet Sci Lett, 500: 215–224

    Article  Google Scholar 

  • Wu H, Zhang S, Jiang G, Huang Q. 2009. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications. Earth Planet Sci Lett, 278: 308–323

    Article  Google Scholar 

  • Xi D, Wan X, Li G, Li G. 2019. Cretaceous integrative stratigraphy and timescale of China. Sci China Earth Sci, 62: 256–286

    Article  Google Scholar 

  • Yan Y, Xia B, Lin G, Cui X, Hu X, Yan P, Zhang F. 2007. Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary. Sediment Geol, 197: 127–140

    Article  Google Scholar 

  • Yu W, Gu H L, Zhang X Q. 1990. Assemblage sequence of late Cretaceous and early Tertiary non-marine gastropods from Nanxiong Basin, Guangdong (in Chinese with English abstract). Acta Palaeontol Sin, 29: 160–182

    Google Scholar 

  • Zambardi T, Sonke J E, Toutain J P, Sortino F, Shinohara H. 2009. Mercury emissions and stable isotopic compositions at Vulcano Island (Italy). Earth Planet Sci Lett, 277: 236–243

    Article  Google Scholar 

  • Zhang X Q. 1984. Division and biota of the Luofozhai Group in Pingling Section, Nanxiong Basin (in Chinese with English abstract). J Stratigr, 8: 239–254

    Google Scholar 

  • Zhang X Q. 1992. A study on ostracod fauna of Shanghu Formation and Cretaceous-Tertiary boundary in Nanxiong Basin, Guangdong (in Chinese with English abstract). Acta Palaeontol Sin, 31: 678–702

    Google Scholar 

  • Zhang X Q, Li S S, Li Y F. 2000. New progress in stratigraphic study of the western area of Nabxiong Basin (in Chinese with English abstract). Guangdong Geol, 15: 9–18

    Google Scholar 

  • Zhang X Q, Ling Q X. 2004. Research status quo about the E/K boundary in Nanxiong Basin. In: Dong W, ed. Proceedings of the Ninth Annual Symposium of the Chinese Society of Vertebrate Paleontology. Beijing: China Ocear Press. 35–42

    Google Scholar 

  • Zhang X Q, Lin J N, Li G, Ling Q X. 2006. Non-marine Cretaceous-Paleogene boundary section at Datang of Nanxiong, Northern Guangdong (in Chinese with English abstract). J Stratigr, 30: 327–340

    Google Scholar 

  • Zhang X Q, Zhang X M, Hou M C, Li G, Li H M. 2013. Lithostratigraphic subdivision of red beds in Nanxiong Basin, Guangdong, China (in Chinese with English abstract). J Stratigr, 37: 57–67

    Google Scholar 

  • Zhang X Q, Li G. 2015. Discussion on geological age of the Pingling Member of Shanghu Formation in the Nanxiong Basin, Guangdong province (in Chinese with English abstract). J Stratigr, 39: 74–80

    Google Scholar 

  • Zhao Z K, Ye J, Li H M, Zhao Z H, Yan Z. 1991. Extinction of the dinosaurs across the Cretaceous-Tertiary boundary in Nanxiong Basin, Guangdong province (in Chinese with English abstract). Vertebrata Palasiatica, 29: 1–12

    Google Scholar 

  • Zhao Z, Yan Z. 2000. Stable isotopic studies of dinosaur eggshells from the Nanxiong Basin, South China. Sci China Ser D-Earth Sci, 43: 84–92

    Article  Google Scholar 

  • Zhao Z, Mao X, Chai Z, Yang G, Kong P, Ebihara M, Zhao Z. 2002. A possible causal relationship between extinction of dinosaurs and K/T iridium enrichment in the Nanxiong Basin, South China: Evidence from dinosaur eggshells. Palaeogeogr Palaeoclimatol Palaeoecol, 178: 1–17

    Article  Google Scholar 

  • Zhao Z, Mao X, Chai Z, Yang G, Zhang F, Yan Z. 2009. Geochemical environmental changes and dinosaur extinction during the Cretaceous-Paleogene (K/T) transition in the Nanxiong Basin, South China: Evidence from dinosaur eggshells. Chin Sci Bull, 54: 201–209

    Google Scholar 

  • Zhao Z K, Ye J, Wang Q. 2017. Dinosaur extinction and subsequent mammalian recovery during the Cretaceous-Paleogene (K/Pg) transition in the Nanxiong Basin. Chin Sci Bull, 62: 1869–1881

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers for their constructive suggestions. The authors would also like to thank Professor Enlou Zhang and Associate Professor Yuxin Zhu (Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences) for their generous support and assistance in mercury concentration measurements. This research was supported by the National Natural Science Foundation of China (Grant Nos. 41602185 and 41772180), the International Geoscience Programme (IGCP 679), and the Innovation Research Team Fund of Fujian Normal University (Grant No. IRTL1705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Ma, M., He, M. et al. Evaluation of the four potential Cretaceous-Paleogene (K-Pg) boundaries in the Nanxiong Basin based on evidences from volcanic activity and paleoclimatic evolution. Sci. China Earth Sci. 64, 631–641 (2021). https://doi.org/10.1007/s11430-020-9736-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9736-0

Keywords

Navigation