Skip to main content
Log in

A wave propagation model with the Biot and the fractional viscoelastic mechanisms

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Energy loss in porous media containing fluids is typically caused by a variety of dynamic mechanisms. In the Biot theory, energy loss only includes the frictional dissipation between the solid phase and the fluid phase, resulting in underestimation of the dispersion and attenuation of the waves in the low frequency range. To develop a dynamic model that can predict the high dispersion and strong attenuation of waves at the seismic band, we introduce viscoelasticity into the Biot model and use fractional derivatives to describe the viscoelastic mechanism, and finally propose a new wave propagation model. Unlike the Biot model, the proposed model includes the intrinsic dissipation of the solid frame. We investigate the effects of the fractional order parameters on the dispersion and attenuation of the P- and S-waves using several numerical experiments. Furthermore, we use several groups of experimental data from different fluid-saturated rocks to testify the validity of the new model. The results demonstrate that the new model provides more accurate predictions of high dispersion and strong attenuation of different waves in the low frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arntsen B, Carcione J M. 2001. Numerical simulation of the Biot slow wave in water-saturated Nivelsteiner Sandstone. Geophysics, 66: 890–896

    Article  Google Scholar 

  • Ba J, Cao H, Yao F, Nie J, Yang H. 2008a. Double-porosity rock model and squirt flow in the laboratory frequency band. Appl Geophys, 5: 261–276

    Article  Google Scholar 

  • Ba J, Nie J X, Cao H, Yang H Z. 2008b. Mesoscopic fluid flow simulation in double-porosity rocks. Geophys Res Lett, 35: L04303

    Article  Google Scholar 

  • Ba J, Xu W, Fu L Y, Carcione J M, Zhang L. 2017. Rock anelasticity due to patchy saturation and fabric heterogeneity: A double double-porosity model of wave propagation. J Geophys Res-Solid Earth, 122: 1949–1976

    Article  Google Scholar 

  • Batzle M L, Han D H, Hofmann R. 2006. Fluid mobility and frequency-dependent seismic velocity—Direct measurements. Geophysics, 71: N1–N9

    Article  Google Scholar 

  • Berryman J G, Thigpen L. 1985. Effective constants for wave propagation through partially saturated porous media. Appl Phys Lett, 46: 722–724

    Article  Google Scholar 

  • Biot M A. 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am, 28: 168–178

    Article  Google Scholar 

  • Biot M A. 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am, 28: 179–191

    Article  Google Scholar 

  • Biot M A. 1962a. Generalized theory of acoustic propagation in porous dissipative media. J Acoust Soc Am, 34: 1254–1264

    Article  Google Scholar 

  • Biot M A. 1962b. Mechanics of deformation and acoustic propagation in porous media. J Appl Phys, 33: 1482–1498

    Article  Google Scholar 

  • Blair D P. 1990. A direct comparison between vibrational resonance and pulse transmission data for assessment of seismic attenuation in rock. Geophysics, 55: 51–60

    Article  Google Scholar 

  • Boltzmann L. 1878. Zur theorie der elastischen nachwirkung. Ann Phys Chem, 241: 430–432

    Article  Google Scholar 

  • Borgomano J V M, Pimienta L, Fortin J, Guéguen Y. 2017. Dispersion and attenuation measurements of the elastic moduli of a dual-porosity limestone. J Geophys Res-Solid Earth, 122: 2690–2711

    Article  Google Scholar 

  • Caputo M. 1976. Vibrations of an infinite plate with a frequency independent Q. J Acoust Soc Am, 60: 634–639

    Article  Google Scholar 

  • Carcione J M. 2007. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. 2nd ed. Amsterdam: Elsevier

    Google Scholar 

  • Carcione J M, Gurevich B. 2011. Differential form and numerical implementation of Biot’s poroelasticity equations with squirt dissipation. Geophysics, 76: N55–N64

    Article  Google Scholar 

  • Chapman S, Quintal B, Tisato N, Holliger K. 2017. Frequency scaling of seismic attenuation in rocks saturated with two fluid phases. Geophys J Int, 208: 221–225

    Article  Google Scholar 

  • Chapman S, Tisato N, Quintal B, Holliger K. 2016. Seismic attenuation in partially saturated berea sandstone submitted to a range of confining pressures. J Geophys Res-Solid Earth, 121: 1664–1676

    Article  Google Scholar 

  • Cheng W, Ba J, Fu L Y, Lebedev M. 2019. Wave-velocity dispersion and rock microstructure. J Pet Sci Eng, 183: 106466

    Article  Google Scholar 

  • Cheng Y F, Yang D H, Yang H Z. 2002. Biot/squirt model in viscoelastic porous media. Chin Phys Lett, 19: 445–448

    Article  Google Scholar 

  • Cole K S, Cole R H. 1941. Dispersion and absorption in dielectrics i. Alternating current characteristics. J Chem Phys, 9: 341–351

    Article  Google Scholar 

  • Deng W, Morozov I B. 2018. Mechanical interpretation and generalization of the cole-cole model in viscoelasticity. Geophysics, 83: MR345–MR352

    Article  Google Scholar 

  • Diallo M S, Appel E. 2000. Acoustic wave propagation in saturated porous media: Reformulation of the biot/squirt flow theory. J Appl Geophys, 44: 313–325

    Article  Google Scholar 

  • Diallo M S, Prasad M, Appel E. 2003. Comparison between experimental results and theoretical predictions for p-wave velocity and attenuation at ultrasonic frequency. Wave Motion, 37: 1–16

    Article  Google Scholar 

  • Du Q Z. 2004. Wavefield forward modeling with the pseudo-spectral method in viscoelastic and azimuthally anisotropic media (in Chinese). Acta Phys Sin, 53: 4428–4434

    Google Scholar 

  • Dvorkin J, Mavko G, Nur A. 1995. Squirt flow in fully saturated rocks. Geophysics, 60: 97–107

    Article  Google Scholar 

  • Dvorkin J, Nolen-Hoeksema R, Nur A. 1994. The squirt-flow mechanism: Macroscopic description. Geophysics, 59: 428–438

    Article  Google Scholar 

  • Dvorkin J, Nur A. 1993. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 58: 524–533

    Article  Google Scholar 

  • Gurevich B, Makarynska D, de Paula O B, Pervukhina M. 2010. A simple model for squirt-flow dispersion and attenuation in fluid-saturated granular rocks. Geophysics, 75: N109–N120

    Article  Google Scholar 

  • Hudson J A. 1981. Wave speeds and attenuation of elastic waves in material containing cracks. Geophys J Int, 64: 133–150

    Article  Google Scholar 

  • Jakobsen M, Chapman M. 2009. Unified theory of global flow and squirt flow in cracked porous media. Geophysics, 74: WA65–WA76

    Article  Google Scholar 

  • Johnson D L. 2001. Theory of frequency dependent acoustics in patchy-saturated porous media. J Acoust Soc Am, 110: 682–694

    Article  Google Scholar 

  • Kelvin W T B. 1882. Mathematical and Physical Papers: Vol 3: Elasticity, Heat, Electro-Magnetism. Cambridge: Cambridge University Press

    Google Scholar 

  • Konjik S, Oparnica L, Zorica D. 2010. Waves in fractional zener type viscoelastic media. J Math Anal Appl, 365: 259–268

    Article  Google Scholar 

  • Liu X, Greenhalgh S, Zhou B, Greenhalgh M. 2018. Effective biot theory and its generalization to poroviscoelastic models. Geophys J Int, 212: 1255–1273

    Article  Google Scholar 

  • Mavko G M, Nur A. 1979. Wave attenuation in partially saturated rocks. Geophysics, 44: 161–178

    Article  Google Scholar 

  • Maxwell J C. 1867. On the dynamical theory of gases. Philos Trans R Soc London, 157: 49–88

    Article  Google Scholar 

  • Morochnik V, Bardet J P. 1996. Viscoelastic approximation of poroelastic media for wave scattering problems. Soil Dyn Earthq Eng, 15: 337–346

    Article  Google Scholar 

  • Morozov I B, Deng W. 2018. Inversion for biot-consistent material properties in subresonant oscillation experiments with fluid-saturated porous rock. Geophysics, 83: MR67–MR79

    Article  Google Scholar 

  • Nie J X, Yang D H. 2008. Viscoelastic BISQ model for low-permeability sandstone with clay. Chin Phys Lett, 25: 3079–3082

    Article  Google Scholar 

  • Nie J X, Yang D H, Ba J. 2010. Velocity dispersion and attenuation of waves in low-porosity-permeability anisotropic viscoelastic media with clay (in Chinese). Chin J Geophys, 53: 385–392

    Google Scholar 

  • Parra J O. 1997. The transversely isotropic poroelastic wave equation including the biot and the squirt mechanisms: Theory and application. Geophysics, 62: 309–318

    Article  Google Scholar 

  • Picotti S, Carcione J M. 2017. Numerical simulation of wave-induced fluid flow seismic attenuation based on the cole-cole model. J Acoust Soc Am, 142: 134–145

    Article  Google Scholar 

  • Pimienta L, Borgomano J V M, Fortin J, Guéguen Y. 2017. Elastic dispersion and attenuation in fully saturated sandstones: Role of mineral content, porosity, and pressures. J Geophys Res-Solid Earth, 122: 9950–9965

    Article  Google Scholar 

  • Pimienta L, Fortin J, Guéguen Y. 2015. Experimental study of Young’s modulus dispersion and attenuation in fully saturated sandstones. Geophysics, 80: L57–L72

    Article  Google Scholar 

  • Pimienta L, Fortin J, Guéguen Y. 2016. Effect of fluids and frequencies on Poisson’s ratio of sandstone samples. Geophysics, 81: D183–D195

    Article  Google Scholar 

  • Plona T J. 1980. Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Appl Phys Lett, 36: 259–261

    Article  Google Scholar 

  • Pride S R, Berryman J G, Harris J M. 2004. Seismic attenuation due to wave-induced flow. J Geophys Res, 109: B01201

    Google Scholar 

  • Pritz T. 2003. Five-parameter fractional derivative model for polymeric damping materials. J Sound Vib, 265: 935–952

    Article  Google Scholar 

  • Samko S G, Kilbas A A, Marichev O I. 1993. Fractional Integrals and Derivatives: Theory and Applications. New York: CRC

    Google Scholar 

  • Spencer J W, Shine J. 2016. Seismic wave attenuation and modulus dispersion in sandstones. Geophysics, 81: D211–D231

    Article  Google Scholar 

  • Subramaniyan S, Quintal B, Madonna C, Saenger E H. 2015. Laboratory-based seismic attenuation in fontainebleau sandstone: Evidence of squirt flow. J Geophys Res-Solid Earth, 120: 7526–7535

    Article  Google Scholar 

  • Szewczyk D, Bauer A, Holt R M. 2018. Stress-dependent elastic properties of shales—Laboratory experiments at seismic and ultrasonic frequencies. Geophys J Int, 212: 189–210

    Article  Google Scholar 

  • Voigt W. 1892. Ueber innere reibung fester körper, insbesondere der metalle. Ann Phys Chem, 283: 671–693

    Article  Google Scholar 

  • Wang M X, Yang D H, Song G J. 2012. Semi-analytical solutions and numerical simulations of 2d sh wave equation (in Chinese). Chin J Geophys, 55: 914–924

    Google Scholar 

  • White J E. 1975. Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40: 224–232

    Article  Google Scholar 

  • Winkler K W. 1983. Frequency dependent ultrasonic properties of high-porosity sandstones. J Geophys Res, 88: 9493–9499

    Article  Google Scholar 

  • Xie P Y, Yang D H. 2018. Seismic wave propagation model in near-surface strong-attenuation media (in Chinese). Chin J Geophys, 61: 917–925

    Google Scholar 

  • Yang D H, Zhang Z J. 2000. Effects of the biot and the squirt-flow coupling interaction on anisotropic elastic waves. Chin Sci Bull, 45: 2130–2138

    Article  Google Scholar 

  • Yang D H, Zhang Z J. 2002. Poroelastic wave equation including the biot/squirt mechanism and the solid/fluid coupling anisotropy. Wave Motion, 35: 223–245

    Article  Google Scholar 

  • Yang L, Yang D H, Nie J X. 2014. Wave dispersion and attenuation in viscoelastic isotropic media containing multiphase flow and its application. Sci China-Phys Mech Astron, 57: 1068–1077

    Article  Google Scholar 

  • Yin H J, Zhao J G, Tang G Y, Zhao L M, Ma X Y, Wang S X. 2017. Pressure and fluid effect on frequency-dependent elastic moduli in fully saturated tight sandstone. J Geophys Res-Solid Earth, 122: 8925–8942

    Article  Google Scholar 

  • Zener C. 1948. Elasticity and Anelasticity of Metals. Chicago: University of Chicago Press. 544–568

    Google Scholar 

  • Zhang B Y, Yang D H, Cheng Y F, Zhang Y Y. 2019. A unified poroviscoelastic model with mesoscopic and microscopic heterogeneities. Sci Bull, 64: 1246–1254

    Article  Google Scholar 

  • Zhang J B, Yang D H, He X J, Ma X. 2018. Discontinuous galerkin method for solving wave equations in two-phase and viscoelastic media (in Chinese). Chin J Geophys, 61: 926–937

    Google Scholar 

  • Zhang L, Ba J, Fu L Y, Carcione J M, Cao C H. 2019. Estimation of pore microstructure by using the static and dynamic moduli. Int J Rock Mech Min Sci, 113: 24–30

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Exploration and Development Research Institute of PetroChina Changqing Oilfield Company for providing the experimental data. This work was supported by the National Natural Science Foundation of China (Grant Nos. 91730306 and 41390452) and the Shengli Oilfield Company (Grant No. 30200020-18-ZC0613-0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinghui Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yang, D., Han, H. et al. A wave propagation model with the Biot and the fractional viscoelastic mechanisms. Sci. China Earth Sci. 64, 364–376 (2021). https://doi.org/10.1007/s11430-020-9668-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9668-5

Keywords

Navigation