Skip to main content
Log in

The shift of biogeochemical cycles indicative of the progressive marine ecosystem collapse across the Permian-Triassic boundary: An analog to modern oceans

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Global warming, the most severe faunal mass extinction and the shift of biogeochemical cycles were observed in the ocean across the Permian-Triassic boundary about 252 million years ago, providing an analog to understanding the modern oceans. Along with the progressive global warming, the biogeochemical cycle was documented to show a shift from the decoupled processes of carbon, nitrogen and sulfur prior to the mass extinction to the coupled biogeochemical processes during faunal mass extinction. The coupled biogeochemical cycle was further observed to shift from the coupled C-N processes during the first episode of the faunal mass extinction to the coupled C-N-S processes during the second episode, diagnostic of the progressive development of more deteriorated marine environmental conditions and the more severe biotic crisis across the Permian-Triassic boundary. The biogeochemical cycles could thus be an indication to the progressive collapse of marine ecosystems triggered by the global warming in Earth history. In modern oceans, the coupled C-N cycle triggered by the global warming was observed in some regions. If these local C-N processes develop and expand to the global oceans, the coupled C-N-S processes might be brought into existence and the marine ecosystems are inevitable to suffer from complete collapse as observed at 252 million years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barnosky A D, Matzke N, Tomiya S, Wogan G O U, Swartz B, Quental T B, Marshall C, McGuire J L, Lindsey E L, Maguire K C, Mersey B, Ferrer E A. 2011. Has the Earth’s sixth mass extinction already arrived? Nature, 471: 51–57

    Article  Google Scholar 

  • Berner R A. 2002. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc Natl Acad Sci USA, 99: 4172–4177

    Article  Google Scholar 

  • Burgess S D, Bowring S, Shen S. 2014. High-precision timeline for Earth’s most severe extinction. Proc Natl Acad Sci USA, 111: 3316–3321

    Article  Google Scholar 

  • Canfield D E, Stewart F J, Thamdrup B, De Brabandere L, Dalsgaard T, Delong E F, Revsbech N P, Ulloa O. 2010. A cryptic sulfur cycle in oxygen-minimum-zone waters off the Chilean coast. Science, 330: 1375–1378

    Article  Google Scholar 

  • Chen J, Shen S, Li X, Xu Y, Joachimski M M, Bowring S A, Erwin D H, Yuan D, Chen B, Zhang H, Wang Y, Cao C, Zheng Q, Mu L. 2016. High-resolution SIMS oxygen isotope analysis on conodont apatite from South China and implications for the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol, 448: 26–38

    Article  Google Scholar 

  • Erwin D H. 2006. Extinction: How life on Earth nearly ended 250 million years ago. Biologist, 311: 1868–1869

    Google Scholar 

  • Grasby S E, Sanei H, Beauchamp B. 2011. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat Geosci, 4: 104–107

    Article  Google Scholar 

  • Jia C, Huang J, Kershaw S, Luo G, Farabegoli E, Perri M C, Chen L, Bai X, Xie S. 2012. Microbial response to limited nutrients in shallow water immediately after the end-Permian mass extinction. Geobiology, 10: 60–71

    Article  Google Scholar 

  • Jiang H, Lai X, Luo G, Aldridge R, Zhang K, Wignall P. 2007. Restudy of conodont zonation and evolution across the P/T boundary at Meishan section, Changxing, Zhejiang, China. Glob Planet Change, 55: 39–55

    Article  Google Scholar 

  • Jin Y G, Wang Y, Wang W, Shang Q H, Cao C Q, Erwin D H. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289: 432–436

    Article  Google Scholar 

  • Joachimski M M, Lai X, Shen S, Jiang H, Luo G, Chen B, Chen J, Sun Y. 2012. Climate warming in the latest Permian and the Permian-Triassic mass extinction. Geology, 40: 195–198

    Article  Google Scholar 

  • Krull E S, Lehrmann D J, Druke D, Kessel B, Yu Y Y, Li R. 2004. Stable carbon isotope stratigraphy across the Permian-Triassic boundary in shallow marine carbonate platforms, Nanpanjiang Basin, south China. Palaeogeogr Palaeoclimatol Palaeoecol, 204: 297–315

    Article  Google Scholar 

  • Luo G, Kump L R, Wang Y, Tong J, Arthur M A, Yang H, Huang J, Yin H, Xie S. 2010. Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction. Earth Planet Sci Lett, 300: 101–111

    Article  Google Scholar 

  • Luo G, Wang Y, Algeo T J, Kump L R, Bai X, Yang H, Yao L, Xie S. 2011. Enhanced nitrogen fixation in the immediate aftermath of the latest Permian marine mass extinction. Geology, 39: 647–650

    Article  Google Scholar 

  • Retallack G J, Jahren A H. 2008. Methane release from igneous intrusion of coal during Late Permian extinction events. J Geol, 116: 1–20

    Article  Google Scholar 

  • Song H, Wignall P B, Tong J, Yin H. 2013. Two pulses of extinction during the Permian-Triassic crisis. Nat Geosci, 6: 52–56

    Article  Google Scholar 

  • Sun Y D, Joachimski M M, Wignall P B, Yan C, Chen Y, Jiang H, Wang L, Lai X. 2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338: 366–370

    Article  Google Scholar 

  • Svensen H, Planke S, Polozov A G, Schmidbauer N, Corfu F, Podladchikov Y Y, Jamtveit B. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett, 277: 490–500

    Article  Google Scholar 

  • Twitchett R J. 2007. The Lilliput effect in the aftermath of the end-Permian extinction event. Palaeogeogr Palaeoclimatol Palaeoecol, 252: 132–144

    Article  Google Scholar 

  • Ulloa O, Canfield D E, DeLong E F, Letelier R M, Stewart F J. 2012. Microbial oceanography of anoxic oxygen minimum zones. Proc Natl Acad Sci USA, 109: 15996–16003

    Article  Google Scholar 

  • Xie S, Pancost R D, Yin H, Wang H, Evershed R P. 2005. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 434: 494–497

    Article  Google Scholar 

  • Xie S, Pancost R D, Huang J, Wignall P B, Yu J, Tang X, Chen L, Huang X, Lai X. 2007b. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis. Geology, 35: 1083–1086

    Article  Google Scholar 

  • Xie S C, Yin H F. 2014. Progress and perspective on frontiers of geobiology. Sci China Earth Sci, 57: 855–868

    Article  Google Scholar 

  • Xie S C, Liu D, Qiu X, Huang X Y, Algeo T J. 2016. Microbial roles equivalent to geological agents of high temperature and pressure in deep Earth. Sci China Earth Sci, 59: 2098–2104

    Article  Google Scholar 

  • Xie S C, Chen J F, Wang F P, Xun L Y, Tang K, Zhai W D, Liu J H, Ma W T. 2017a. Mechanisms of carbon storage and the coupled carbon, nitrogen and sulfur cycles in regional seas in response to global change. Sci China Earth Sci, 60: 1010–1014

    Article  Google Scholar 

  • Xie S, Algeo T J, Zhou W, Ruan X, Luo G, Huang J, Yan J. 2017b. Contrasting microbial community changes during mass extinctions at the Middle/Late Permian and Permian/Triassic boundaries. Earth Planet Sci Lett, 460: 180–191

    Article  Google Scholar 

  • Yin H, Xie S, Luo G, Algeo T J, Zhang K. 2012. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan. Earth-Sci Rev, 115: 163–172

    Article  Google Scholar 

  • Zhou W, Algeo T J, Ruan X, Luo G, Chen Z Q, Xie S. 2017. Expansion of photic-zone euxinia during the Permian–Triassic biotic crisis and its causes: Microbial biomarker records. Palaeogeogr Palaeoclimatol Palaeoecol, 474: 140–151

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the State Key R & D Project (Grant No. 2016YFA0601100), the National Natural Science Foundation of China (Grant No. 41330103) and the 111 Project of China (Grant No. B08030)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shucheng Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, S. The shift of biogeochemical cycles indicative of the progressive marine ecosystem collapse across the Permian-Triassic boundary: An analog to modern oceans. Sci. China Earth Sci. 61, 1379–1383 (2018). https://doi.org/10.1007/s11430-017-9207-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9207-3

Keywords

Navigation