Skip to main content
Log in

Effects of seagrass leaf litter decomposition on sediment organic carbon composition and the key transformation processes

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Seagrass leaf litters are an important source of sediment organic carbon (SOC). However, the mechanisms of seagrass leaf litter decomposition influencing SOC composition and the key transformation processes remain unknown. We performed a laboratory chamber experiment to compare the labile organic carbon (OC) composition and the enzyme activities governing SOC transformation between the seagrass group (seagrass leaf litter addition) and the control group. The results showed that the seagrass leaf litter decomposition significantly elevated the salt-extractable carbon (SEC) content and the SEC/SOC. Additionally, the levels of invertase, polyphenol oxidase, and cellulase in the seagrass leaf litters addition group were generally higher than in the control group, which could elevate recalcitrant OC decomposition. Following 24 days incubation, addition of seagrass leaf litter increased the amount of CO2 released, but decreased the SOC content. Therefore, seagrass leaf litter decomposition leached abundant dissolved OC, which enhanced the activity and transformation of SOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blum L, Mills A. 1991. Microbial growth and activity during the initial stages of seagrass decomposition. Mar Ecol Prog Ser, 70: 73–82

    Article  Google Scholar 

  • Burns R G, Dick R P. 2002. Enzymes in the environment: Activity, ecology, and applications. CRC Press

    Book  Google Scholar 

  • Cebrian J. 2002. Variability and control of carbon consumption, export, and accumulation in marine communities. Limnol Oceanogr, 47: 11–22

    Article  Google Scholar 

  • Chiu S H, Huang Y H, Lin H J. 2013. Carbon budget of leaves of the tropical intertidal seagrass Thalassia hemprichii. Estuarine Coastal Shelf Sci, 125: 27–35

    Article  Google Scholar 

  • Coupland G T, Duarte C M, Walker D I. 2007. High metabolic rates in beach cast communities. Ecosystems, 10: 1341–1350

    Article  Google Scholar 

  • DeForest J L. 2009. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUBlinked substrates and l-DOPA. Soil Biol Biochem, 41: 1180–1186

    Article  Google Scholar 

  • DeForest J L, Zak D R, Pregitzer K S, Burton A J. 2004. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in Northern Hardwood forests. Soil Sci Soc Am J, 68: 132–138

    Article  Google Scholar 

  • Dodla S K, Wang J J, Delaune R D. 2012. Characterization of labile organic carbon in coastal wetland soils of the Mississippi River deltaic plain: Relationships to carbon functionalities. Sci Total Environ, 435-436: 151–158

    Article  Google Scholar 

  • Duarte C M. 2017. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget. Biogeosciences, 14: 301–310

    Article  Google Scholar 

  • Duarte C M, Chiscano C L. 1999. Seagrass biomass and production: A reassessment. Aquatic Bot, 65: 159–174

    Article  Google Scholar 

  • Duarte C M, Kennedy H, Marbà N, Hendriks I. 2013. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean Coastal Manage, 83: 32–38

    Article  Google Scholar 

  • Duarte C M, Marbà N, Gacia E, Fourqurean J W, Beggins J, Barrón C, Apostolaki E T. 2010. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. glob Biogeochem Cycle, 24: GB4032

    Article  Google Scholar 

  • Dugan J E, Hubbard D M, McCrary M D, Pierson M O. 2003. The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuarine Coastal Shelf Sci, 58: 25–40

    Article  Google Scholar 

  • Fang C, Smith P, Moncrieff J B, Smith J U. 2005. Erratum: Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature, 436: 881–881

    Article  Google Scholar 

  • Fourqurean J W, Duarte C M, Kennedy H, Marbà N, Holmer M, Mateo M A, Apostolaki E T, Kendrick G A, Krause-Jensen D, McGlathery K J, Serrano O. 2012. Seagrass ecosystems as a globally significant carbon stock. Nat Geosci, 5: 505–509

    Article  Google Scholar 

  • Fraser M W, Statton J, Hovey R K, Laverock B, Kendrick G A. 2016. Seagrass derived organic matter influences biogeochemistry, microbial communities, and seedling biomass partitioning in seagrass sediments. Plant Soil, 400: 133–146

    Article  Google Scholar 

  • Freeman C, Ostle N, Kang H. 2001. An enzymic ‘latch’ on a global carbon store. Nature, 409: 149

    Article  Google Scholar 

  • Godshalk G L, Wetzel R G. 1978. Decomposition of aquatic angiosperms. III. Zostera marina L. and a conceptual model of decomposition. Aquat Bot, 5: 329–354

    Article  Google Scholar 

  • Gonsalves M J, Fernandes C E G, Fernandes S O, Kirchman D L, Bharathi P A L. 2011. Effects of composition of labile organic matter on biogenic production of methane in the coastal sediments of the Arabian Sea. Environ Monit Assess, 182: 385–395

    Article  Google Scholar 

  • Green E P, Short F T. 2003. World Atlas of Seagrasses. Berkeley: University of California Press

    Google Scholar 

  • Heck Jr. K L, Valentine J F. 2006. Plant-herbivore interactions in seagrass meadows. J Exp Mar Biol Ecol, 330: 420–436

    Article  Google Scholar 

  • Holmer M, Duarte C, Boschker H, Barrón C. 2004. Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquat Microb Ecol, 36: 227–237

    Article  Google Scholar 

  • Holmer M, Bachmann Olsen A. 2002. Role of decomposition of mangrove and seagrass detritus in sediment carbon and nitrogen cycling in a tropical mangrove forest. Mar Ecol Prog Ser, 230: 87–101

    Article  Google Scholar 

  • Jiménez M A, Beltran R, Traveset A, Calleja M L, Delgado-Huertas A, Marbà N. 2017. Aeolian transport of seagrass (Posidonia oceanica) beach-cast to terrestrial systems. Estuar Coast Shelf Sci, 196: 31–44

    Article  Google Scholar 

  • Karaca A, Cetin S C, Turgay O C, Kizilkaya R. 2011. Soil enzymes as indication of soil quality. In: Shukla G, Varma A, eds. Soil Enzymology. Heidelberg: Springer-Verlag, Berlin. 119–148

  • Kristensen E. 1994. Decomposition of macroalgae, vascular plants and sediment detritus in seawater: Use of stepwise thermogravimetry. Biogeochemistry, 26: 1–24

    Article  Google Scholar 

  • Kristensen E, Ahmed S I, Devol A H. 1995. Aerobic and anaerobic decomposition of organic matter in marine sediment: Which is fastest? Limnol Oceanogr, 40: 1430–1437

    Article  Google Scholar 

  • Kristensen E, Hansen K. 1995. Decay of plant detritus in organic-poor marine sediment: Production rates and stoichiometry of dissolved C and N compounds. Issn-0022-2402, 53: 675–702

    Article  Google Scholar 

  • López N I, Duarte C M, Vallespinós F, Romero J, Alcoverro T. 1998. The effect of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. J Exp Mar Biol Ecol, 224: 155–166

    Article  Google Scholar 

  • Lavery P, McMahon K, Weyers J, Boyce M, Oldham C. 2013. Release of dissolved organic carbon from seagrass wrack and its implications for trophic connectivity. Mar Ecol Prog Ser, 494: 121–133

    Article  Google Scholar 

  • Liu S, Jiang Z, Wu Y, Zhang J, Arbi I, Ye F, Huang X, Macreadie P I. 2017a. Effects of nutrient load on microbial activities within a seagrass-dominated ecosystem: Implications of changes in seagrass blue carbon. Mar Pollut Bull, 117: 214–221

    Article  Google Scholar 

  • Liu S, Jiang Z, Zhang J, Gan M, Wu Y, Huang X. 2017b. Characteristics of key enzyme activities influencing sediment organic carbon transformation and their response to the nutrient loading in seagrass bed of Xincun bay,Hainan Island (in Chinese). Mar Environ Sci, 36: 1–7

    Google Scholar 

  • Liu S, Jiang Z, Zhang J, Wu Y, Huang X, Macreadie P I. 2017c. Sediment microbes mediate the impact of nutrient loading on blue carbon sequestration by mixed seagrass meadows. Sci Total Environ, 599–600: 1479–1484

    Article  Google Scholar 

  • Liu S, Jiang Z, Zhang J, Wu Y, Lian Z, Huang X. 2016. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea. Mar Pollut Bull, 110: 274–280

    Article  Google Scholar 

  • Macreadie P I, Baird M E, Trevathan-Tackett S M, Larkum A W D, Ralph P J. 2014. Quantifying and modelling the carbon sequestration capacity of seagrass meadows—A critical assessment. Mar Pollut Bull, 83: 430–439

    Article  Google Scholar 

  • Macreadie P I, Trevathan-Tackett S M, Baldock J A, Kelleway J J. 2017. Converting beach-cast seagrass wrack into biochar: A climate-friendly solution to a coastal problem. Sci Total Environ, 574: 90–94

    Article  Google Scholar 

  • Maie N, Jaffé R, Miyoshi T, Childers D L. 2006. Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic Wetland. Biogeochemistry, 78: 285–314

    Article  Google Scholar 

  • Mateo M A, Cebrián J, Dunton K, Mutchler T. 2006. Carbon flux in seagrass ecosystems. In: Larkum, A W D, Orth R J, Duarte C M, eds. Seagrasses: Biology, ecology and conservation. Springer, Dordrecht. 159–192

  • Misson G, Incerti G, Alberti G, Delle Vedove G, Pirelli T, Peressotti A. 2017. Assessing the contribution of beach-cast seagrass wrack to global GHGs emissions: Experimental models, problems and perspectives. EGU General Assembly Conference Abstracts. 19416

    Google Scholar 

  • Mucci A, Sundby B, Gehlen M, Arakaki T, Zhong S, Silverberg N. 2000. The fate of carbon in continental shelf sediments of eastern Canada: A case study. Deep Sea Res Part II-Topic Stud Oceanogr, 47: 733–760

    Article  Google Scholar 

  • Núñez S, Martínez-Yrízar A, Búrquez A, García-Oliva F. 2001. Carbon mineralization in the southern Sonoran Desert. Acta Oecol, 22: 269–276

    Article  Google Scholar 

  • Pedersen A G U, Berntsen J, Lomstein B A. 1999. The effect of eelgrass decomposition on sediment carbon and nitrogen cycling: A controlled laboratory experiment. Limnol Oceanogr, 44: 1978–1992

    Article  Google Scholar 

  • Peduzzi P, Herndl G. 1991. Decomposition and significance of sea-grass leaf litter (Cymodocea nodosa) for the microbial food web in coastal waters (Gulf of Trieste, Northern Adriatic Sea). Mar Ecol Prog Ser, 71: 163–174

    Article  Google Scholar 

  • Robertson M, Mills A, Zieman J. 1982. Microbial synthesis of detrituslike particulates from dissolved organic carbon released by tropical seagrasses. Mar Ecol Prog Ser, 7: 279–285

    Article  Google Scholar 

  • Rochette P, Gregorich E G. 1998. Dynamics of soil microbial biomass C, soluble organic C and CO2 evolution after three years of manure application. Can J Soil Sci, 78: 283–290

    Article  Google Scholar 

  • Russell B D, Connell S D, Uthicke S, Muehllehner N, Fabricius K E, Hall- Spencer J M. 2013. Future seagrass beds: Can increased productivity lead to increased carbon storage? Mar Pollut Bull, 73: 463–469

    Article  Google Scholar 

  • Shao X, Yang W, Wu M. 2015. Seasonal dynamics of soil labile organic carbon and enzyme activities in relation to vegetation types in Hangzhou Bay tidal flat wetland. PLoS ONE, 10: e0142677

    Article  Google Scholar 

  • Stemmer M, Gerzabek M H, Kandeler E. 1998. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication. Soil Biol Biochem, 30: 9–17

    Article  Google Scholar 

  • Vance E D, Brookes P C, Jenkinson D S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem, 19: 703–707

    Article  Google Scholar 

  • Vichkovitten T, Holmer M. 2004. Contribution of plant carbohydrates to sedimentary carbon mineralization. Org Geo Chem, 35: 1053–1066

    Article  Google Scholar 

  • Waldrop M P, Zak D R, Sinsabaugh R L. 2004. Microbial community response to nitrogen deposition in northern forest ecosystems. Soil Biol Biochem, 36: 1443–1451

    Article  Google Scholar 

  • Wang X, Chen R F, Cable J E, Cherrier J. 2014. Leaching and microbial degradation of dissolved organic matter from salt marsh plants and seagrasses. Aquat Sci, 76: 595–609

    Article  Google Scholar 

  • Wei-xiang W, Qing-fu Y, Hang M, Xue-jun D, Wen-ming J. 2004. Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil. Soil Biol Biochem, 36: 289–295

    Article  Google Scholar 

  • Yang W, Zhao H, Chen X, Yin S, Cheng X, An S. 2013. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China. Ecol Eng, 61: 50–57

    Article  Google Scholar 

  • Yin R, Deng H, Wang H, Zhang B. 2014. Vegetation type affects soil enzyme activities and microbial functional diversity following re-vegetation of a severely eroded red soil in sub-tropical China. CATENA, 115: 96–103

    Article  Google Scholar 

  • Ying G G, Yu X Y, Kookana R S. 2007. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling. Environ Pollut, 150: 300–305

    Article  Google Scholar 

  • Zhang C, Liu G, Xue S, Song Z. 2011. Rhizosphere soil microbial activity under different vegetation types on the Loess Plateau, China. Geoderma, 161: 115–125

    Article  Google Scholar 

  • Zhang L, Song L, Shao H, Shao C, Li M, Liu M, Brestic M, Xu G. 2014. Spatio-temporal variation of rhizosphere soil microbial abundance and enzyme activities under different vegetation types in the coastal zone, Shandong, China. Plant BioSyst-An Int J Deal all Aspects Plant Biol, 148: 403–409

    Article  Google Scholar 

  • Zhou C, Jiang Z, Lian Z, Zhang J, Ni Z, Xu B, Huang X. 2014. Characteristics of seagrass Thalassia hemprichii leaf litter and its response to the fish farming in the Xincun Bay, Hainan Island (in Chinese). Chin J Ecol, 33: 1546–1552

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (Grant Nos. 2015CB452905, 2015CB452902), the National Natural Science Foundation of China (Grant Nos. 41730529, 41306108, 41406128), and the National Specialized Project of Science and Technology (Grant No. 2015FY110600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoPing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Jiang, Z., Deng, Y. et al. Effects of seagrass leaf litter decomposition on sediment organic carbon composition and the key transformation processes. Sci. China Earth Sci. 60, 2108–2117 (2017). https://doi.org/10.1007/s11430-017-9147-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-017-9147-4

Keywords

Navigation