Skip to main content
Log in

Determination of regional earthquake source parameters in wavelet domain

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Investigating source parameters of small and moderate earthquakes plays an important role in seismology research. For small and moderate earthquakes, the mechanisms are usually obtained by first motion of P-Wave, surface wave spectra method in frequency-domain or the waveform inversion in time-domain, based on the regional waveform records. We applied the wavelet domain inversion method to determine mechanism of regional earthquake. Using the wavelet coefficients of different scales can give more information to constrain the inversion. We determined the mechanisms of three earthquakes occurred in California, the United States. They are consistent with the previous results (Harvard Centroid Moment Tensor and United States Geological Service). This proves that the wavelet domain inversion method is an efficient method to determine the source parameters of small and moderate earthquakes, especially the strong aftershocks after a large, disastrous earthquake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubo A, Fukuyama E, Kawai H, et al. NIED seismic moment tensor catalogue for regional earthquakes around Japan: Quality test and application. Tectonophysics, 2002, 356: 23–48

    Article  Google Scholar 

  2. Braunmiller J, Kradolfer U, Baer M, et al. Regional moment tensor determination in the European-Mediterranean area — Initial results. Tectonophysics, 2002, 356: 5–22

    Article  Google Scholar 

  3. Chen Y. Consistency of focal mechanism as a new parameter in describing seismic activity. Chin J Geophys, 1978, 21: 140–159

    Google Scholar 

  4. Luo Y, Ni S D, Zheng X F, et al. A shallow aftershock sequence in the north-eastern end of the Wenchuan earthquake aftershock zone. Sci China Earth Sci, 2010, 53: 1655–1664

    Article  Google Scholar 

  5. Dziewonski A M, Woodhouse J H. An experiment in systematic study of global seismicity: Centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981. J Geophys Res, 1983, 88: 3247–3271

    Article  Google Scholar 

  6. Dziewonski A M, Chou T A, Woodhouse J H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res, 1981, 86: 2825–2852

    Article  Google Scholar 

  7. Sipkin S A. Estimation of earthquake source parameters by the inversion of waveform data: Synthetic waveforms. Phys Earth Planet Inter, 1982, 30: 242–259

    Article  Google Scholar 

  8. Kawakatsu H. Automated near-realtime CMT inversion. Geophys Res Lett, 1995, 22: 2569–2572

    Article  Google Scholar 

  9. Scott D R, Kanamori H. On the consistency of moment tensor source mechanisms with first-motion data. Phys Earth Planet Inter, 1985, 37: 97–107

    Article  Google Scholar 

  10. Patton H. Reference point equilization method for determining the source and path effects of surface waves. J Geophvs Res, 1980, 85: 821–848

    Article  Google Scholar 

  11. Kanamori H, Given J. Use of long-period surface waves for rapid determination of earthquake source parameters. Phys Earth Planet Inter, 1981, 27: 8–31

    Article  Google Scholar 

  12. Beck S L, Patton H J. Inversion of regional surface-wave spectra for source parameters of aftershocks from the Loma Prieta earthquake. Bull Seismol Soc Amer, 1991, 81: 1726–1736

    Google Scholar 

  13. Romanowicz B, Dreger D, Pasyanos M, et al. Monitoring of strain release in central and northern California using broadband data. Geophys Res Lett, 1993, 20: 1643–1646

    Article  Google Scholar 

  14. Tinker M A, Beck S L. Inversion of regional surface-wave spectra for source parameters of aftershocks from the 1992 Petrolia earthquake sequence. Bull Seismol Soc Amer, 1995, 85: 705–715

    Google Scholar 

  15. Thio H K, Kanamori H. Moment-tensor inversions for local earthquakes using surface waves recorded at terrascope. Bull Seismol Soc Amer, 1995, 85: 1021–1038

    Google Scholar 

  16. Dreger D S, Helmberger D V. Source parameters of the Sierra Madre earthquake from regional and local body waves. Geophys Res Lett, 1991, 18: 2015–2018

    Article  Google Scholar 

  17. Walter W. Source parameters of the June 29, 1992 little skull mountain earthquake from complete regional waveforms at a single station. Geophys Res Lett, 1993, 20: 403–406

    Article  Google Scholar 

  18. Zhao L S, Helmberger D V. Source estimation from broadband regional seismograms. Bull Seismol Soc Amer, 1994, 84: 91–104

    Google Scholar 

  19. Ritsema J, Lay T. Rapid sourcem echanism determination of large (M w⩾5) earthquakes in the western United States. Geophys Res Lett, 1993, 20: 1611–1614

    Article  Google Scholar 

  20. Pasyanos M E, Dreger D S, Romanowicz B. Toward real-time estimation of regional moment tensors. Bull Seismol Soc Amer, 1996, 86: 1255–1269

    Google Scholar 

  21. Stich D, Ammon C J, Morales J. Moment tensor solutions for small and moderate earthquakes in the Ibero-Maghreb region. J Geophys Res, 2003, 108: 2148–2167

    Article  Google Scholar 

  22. Scognamiglio L, Tinti E, Michelini A. Real-time determination of seismic moment tensor for the Italian region. Bull Seismol Soc Amer, 2009, 99: 2223–2242

    Article  Google Scholar 

  23. Ji C, Wald D J, Helmberger D V. Source description of the 1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis. Bull Seismol Soc Amer, 2002, 92: 1192–1207

    Article  Google Scholar 

  24. Ji C, Wald D J, Helmberger D V. Source description of the 1999 Hector Mine, California, earthquake, part II: Complexity of slip history. Bull Seismol Soc Amer, 2002, 92: 1208–1226

    Article  Google Scholar 

  25. Meyer Y. Orthonormal wavelets. In: Combes J M, Grossmann A, Tchamitchian P, eds. Wavelets. Berlin: Springer, 1989. 21–37

    Google Scholar 

  26. Wu Q J, Tian X B, Zhang N L, et al. Inversion of receiver function by wavelet transformation. Acta Seismol Sin, 2003, 25: 601–607

    Google Scholar 

  27. Yomogida K. Detection of anomalous seismic phases by the wavelet transform. Geophys J Int, 1994, 116: 119–130

    Article  Google Scholar 

  28. Yamada M, Ohkitani K. Orthonormal wavelet analysis of turbulence. Fluid Dyn Res, 1991, 8: 101–115

    Article  Google Scholar 

  29. Yao Z X, Harkider D G. A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms. Bull Seismol Soc Amer, 1983, 73: 1685–1699

    Google Scholar 

  30. Yao Z X, Ji C. The inverse problem of finite fault study in time domain. Chin J Geophys, 1997, 40: 691–701

    Google Scholar 

  31. Wang W M, He Y M, Yao Z X. Complexity of the coseismic rupture for 1999 Chi-Chi Earthquake (Taiwan) from inversion of GPS observations. Tectonophysics, 2004, 382: 151–172

    Article  Google Scholar 

  32. Jones L M, Dollar R S. Evidence of basin-and-range extensional tectonics in the Sierra Nevada: The Durrwood Meadows swarm, Tulare county, California. Bull Seismol Soc Amer, 1986, 76: 439–461

    Google Scholar 

  33. Ichinose G A, Goldstein P. Inversion of far-regional broadband P waves for the estimation ofsource parameters from shallow depth earthquakes. J Geophys Res, 2007, 112: B02304

    Article  Google Scholar 

  34. Dreger D S, Helmberger D V. Determination of source parametersat regional distances with three-component sparse network data. J Geophys Res, 1993, 98: 8107–8125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinLai Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, J., Yao, Z. Determination of regional earthquake source parameters in wavelet domain. Sci. China Earth Sci. 55, 296–305 (2012). https://doi.org/10.1007/s11430-011-4341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-011-4341-8

Keywords

Navigation