Skip to main content
Log in

Trend of Santonian (Late Cretaceous) atmospheric CO2 and global mean land surface temperature: Evidence from plant fossils

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Quantitative reconstructions of atmospheric CO2 by using terrestrial and marine records are critical for understanding the so-called “greenhouse” conditions in the Cretaceous, but data from terrestrial plants for several stages of this period remain quite limited. Using the stomatal index (SI) technique, here we estimate the Santonian (Late Cretaceous) CO2 contents based on a sequence of fossil cuticles of Ginkgo adiantoides (Ung.) Heer from three beds of the Yong’ancun Formation in Jiayin, Heilongjiang Province, northeastern China. By the regress function, SIs of Ginkgo fossils reveal a pronounced CO2 reduction from the early to late Santonian (∼661 and ∼565 ppm, respectively). The relatively high CO2 levels provide additional evidence for paleoclimatic warmth in this interval. Moreover, available paleobotanical data illustrate a decline trend of CO2 contents throughout the Late Cretaceous, punctuated by several fluctuations in particular episodes with different magnitudes. The CO2 contents shifted notably in the late Cenomanian, Turonian, early Santonian, late Campanian, and probably latest Maastrichtian. Furthermore, a comprehensive study based on CO2 data shows that the global mean land surface temperature (GMLST) fluctuated several times accordingly. The change ratios of GMLST (ΔT) increased from ∼3°C in late Cenomanian to ∼4.7°C in mid Turonian, and then dramatically reduced to ∼2.2°C in mid Coniacian. From the Santonian onward, it appears that the temperature gradually decreased with a few minor fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang C S, Hu X M, Sarti M, et al. Upper Cretaceous oceanic red beds in southern Tibet: A major change from anoxic to oxic, deep-sea environments. Cretaceous Res, 2005, 26: 21–32

    Article  Google Scholar 

  2. Alvarez L W, Alvarez W, Asaro F, et al. Extraterrestrial cause for the Cretaceous-Tertiary extinction-experimental results and theoretical interpretation. Science, 1980, 208: 1095–1108

    Article  Google Scholar 

  3. McElwain J, Willis K J, Lupia R. Cretaceous CO2 decline and the radiation and diversification of angiosperms. In: Ehleringer J R, Cerling T E, Dearing M D, eds. A History of Atmospheric CO2 and its Effects on Plants, Animals, and Ecosystems. Berlin: Springer-Verlag, 2005. 133–165

    Chapter  Google Scholar 

  4. Davies A, Kemp A E S, Pike J. Late Cretaceous seasonal ocean variability from the Arctic. Nature, 2009, 460: 254–258

    Article  Google Scholar 

  5. Royer D L, Berner R A, Park J. Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature, 2007, 446: 530–532

    Article  Google Scholar 

  6. Heimhofer U, Hochuli P A, Burla S, et al. Timing of Early Cretaceous angiosperm diversification and possible links to major paleoenvironmental change. Geology, 2005, 33: 141–144

    Article  Google Scholar 

  7. Berner R A. GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time. Am J Sci, 1994, 294: 56–91

    Article  Google Scholar 

  8. Berner R A, Kothavala Z. GEOCARB III: A revised model of atmospheric CO2 over Phanerozoic time. Am J Sci, 2001, 301: 182–204

    Article  Google Scholar 

  9. Ekart D D, Cerling T E, Montanez I P, et al. A 400 million year carbon isotpe record of pedogenic carbonate: Implications for paleoatomosperic carbon dioxide. Am J Sci, 1999, 299: 805–827

    Article  Google Scholar 

  10. Tajika E. Carbon cycle and climate change during the Cretaceous inferred from a biogeochemical carbon cycle model. Island Arc, 1999, 8: 293–303

    Article  Google Scholar 

  11. Beerling D J, Lomax B H, Royer D L, et al. An atmospheric PCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils. Proc Nat Acad Sci USA, 2002, 99: 7836–7840

    Article  Google Scholar 

  12. Haworth M, Hesselbo S P, McElwain J C, et al. Mid-Cretaceous PCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geology, 2005, 33: 749–752

    Article  Google Scholar 

  13. Passalia M G. Cretaceous PCO2 estimation from stomatal frequency analysis of gymnosperm leaves of Patagonia, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 273: 17–24

    Article  Google Scholar 

  14. Quan C, Sun C, Sun Y, et al. High resolution estimates of paleo-CO2 levels through the Campanian (Late Cretaceous) based on Ginkgo cuticles. Cretaceous Res, 2009, 30: 424–428

    Article  Google Scholar 

  15. Retallack G J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature, 2001, 411: 287–290

    Article  Google Scholar 

  16. Sun B N, Xiao L, Xie S P, et al. Quantitative analysis of paleoatmospheric CO2 level based on stomatal characters of fossil Ginkgo from Jurassic to Cretaceous in China. Acta Geol Sin-Engl Ed, 2007, 81: 931–939

    Article  Google Scholar 

  17. Kürschner W M. Leaf sensor for CO2 in deep time. Nature, 2001, 411: 247–248

    Article  Google Scholar 

  18. Beerling D J, Royer D L. Fossil plants indicators of the Phanerozoic global carbon cycle. Annu Rev Earth Planet Sci, 2002, 30: 527–556

    Article  Google Scholar 

  19. Hetherington A M, Woodward F I. The role of stomata in sensing and driving environmental change. Nature, 2003, 424: 901–907

    Article  Google Scholar 

  20. Goodwin S M, Jenks M A. Plant cuticle function as a barrier to water loss. In: Matthew A, Jenks P M H, eds. Plant Abiotic Stress. Oxford: Blackwell Publishing, 2007. 14–36

    Google Scholar 

  21. Pillitteri L J, Sloan D B, Bogenschutz N L, et al. Termination of asymmetric cell division and differentiation of stomata. Nature, 2007, 445: 501–505

    Article  Google Scholar 

  22. Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821–827

    Article  Google Scholar 

  23. Woodward F I. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 1987, 327: 617–618

    Article  Google Scholar 

  24. Royer D L, Wing S, Beerling D J, et al. Paleobotanical evidence for near present day levels of atmospheric CO2 during part of the Tertiary. Science, 2001, 292: 2310–2313

    Article  Google Scholar 

  25. Royer D L. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev Palaeobot Palynol, 2001, 114: 1–28

    Article  Google Scholar 

  26. Sun B N, Yan D F, Xie S P, et al. Stomata and Carbon Isotope of Fossil Plants and Their Applications (in Chinese). Beijing: Science Press, 2009. 1–222

    Google Scholar 

  27. Xie S, Sun B, Yan D, et al. Altitudinal variation in Ginkgo leaf characters: Clues to paleoelevation reconstruction. Sci China Ser D-Earth Sci, 2009, 52: 2040–2046

    Article  Google Scholar 

  28. Bureau of Geology and Mineral Resources of Heilongjiang Province. Regional Geology of Heilongjiang Province (in Chinese). Beijing: Geological Publishing House, 1993. 1–736

    Google Scholar 

  29. Sun G, Akhmetiev M, Golovneva L, et al. Late Cretaceous plants from Jiayin along Heilongjiang River, Northeast China. Forsch Inst Senck, 2007, 258: 75–83

    Google Scholar 

  30. Quan C, Sun G. Late Cretaceous aquatic angiosperms from Jiayin of Heilongjiang, Northeast China. Acta Geol Sin-Engl Ed, 2008, 82: 1133–1140

    Google Scholar 

  31. Royer D L. Estimating latest Cretaceous and Tertiary atmospheric CO2 from stomatal indices. In: Wing S L, Gingerich P D, Schmitz B, et al., eds. Causes and Consequences of Globally Warm Climates in the Early Paleogene. Boulder: The Geological Society of America, 2003. 79–93

    Chapter  Google Scholar 

  32. Tralau H. Evolutionary trends in the genus Ginkgo. Lethaia, 1968, 1: 63–101

    Article  Google Scholar 

  33. Royer D L, Hickey L J, Wing S L. Ecological conservatism in the “living fossil” Ginkgo. Paleobiology, 2003, 29: 84–104

    Article  Google Scholar 

  34. Quan C, Sun G, Zhou Z. A new Tertiary Ginkgo (Ginkgoaceae) from the Wuyun Formation of Jiayin, Heilongjiang, northeastern China and its paleoenvironmental implications. Am J Bot, 2010, 97: 446–457

    Article  Google Scholar 

  35. McElwain J C. Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past? Philos T R Soc B, 1998, 353: 83–96

    Article  Google Scholar 

  36. Kothavala Z, Oglesby R J, Saltzman B. Sensitivity of equilibrium surface temperature of CCM3 to systematic changes in atmospheric CO2. Geophys Res Lett, 1999, 26: 209–212

    Article  Google Scholar 

  37. Ding Z L, Duan X N, Ge Q S, et al. On the major proposals for carbon emission reduction and some related issues. Sci China Earth Sci, 2010, 53: 159–172

    Article  Google Scholar 

  38. Nordt L, Atchley S, Dworkin S I. Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiary boundary. Geology, 2002, 30: 703–706

    Article  Google Scholar 

  39. Wallmann K. Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochim Cosmochim Acta, 2001, 65: 3005–3025

    Article  Google Scholar 

  40. Forster A, Schouten S, Baas M, et al. Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology, 2007, 35: 919–922

    Article  Google Scholar 

  41. Arthur M A, Dean W E, Schlanger S O. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. Geophys Monogr, 1985, 32: 504–29

    Google Scholar 

  42. Chen L Q, Li C S, Chaloner W G, et al. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. Am J Bot, 2001, 88: 1309–1315

    Article  Google Scholar 

  43. Berner R A. The rise of plants and their effect on weathering and atmospheric. Science, 1997, 276: 544–546

    Article  Google Scholar 

  44. Fletcher B J, Beerling D J, Brentnall S J, et al. Fossil bryophytes as recorders of ancient CO2 levels: Experimental evidence and a Cretaceous case study. Global Biogeochem Cycles, 2005, 19: 1–13

    Article  Google Scholar 

  45. Hegerl G C, Crowley T J, Hyde W T, et al. Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature, 2006, 440: 1029–1032

    Article  Google Scholar 

  46. Royer D L. CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta, 2006, 70: 5665–5675

    Article  Google Scholar 

  47. Li X, Jenkyns H C, Wang C, et al. Upper Cretaceous carbon- and oxygen-isotope stratigraphy of hemipelagic carbonate facies from southern Tibet, China. J Geol Soc, 2006, 163: 375–382

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Quan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, C., Wang, D., Zhu, Z. et al. Trend of Santonian (Late Cretaceous) atmospheric CO2 and global mean land surface temperature: Evidence from plant fossils. Sci. China Earth Sci. 54, 1338–1345 (2011). https://doi.org/10.1007/s11430-011-4267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-011-4267-1

Keywords

Navigation