Skip to main content
Log in

Geochemistry and origin of tektites from Guilin of Guangxi, Guangdong and Hainan

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Six tektites from Guilin of Guangxi, Hainan, and Guangdong were analyzed for the abundances of major elements and 27 trace elements. All samples are splash-form tektites and have SiO2 contents ranging from 73.1wt% to 76.0wt% (74.6wt% on average). The chemical compositions, except Cr and Ni, of tektites from different areas, are similar. Guangdong tektite shows enrichments of Ni and Cr contents by a factor of 3, and has slightly higher MgO and FeO than Hainan and Guilin tektites. It indicates that the tektites were formed by mixing several target rocks. The major and trace element concentrations of southern China tektites closely resemble previously reported data for average splash-form and Muong Nong-type indochinites, indicating that they have the same source. (La/Lu)CI (7.99), Zr/Hf (35.45 on average), Ba/Rb (3.59 on average), and the rare earth element (REE) contents of tektites are similar to those of typical post Archean upper crustal rocks. This study suggests that the best fit for the target source of southern China tektites could be a combination of 41% shale, 2% sandstone, 20% greywacke, and 37% quartzite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Storzer D, Wagner G A. Fission-track ages of North American tektites. Earth Planet Sci Lett, 1971, 10: 435–440

    Article  Google Scholar 

  2. Glass B P, Koeberl C, Blum D J, et al. A Muong Nong-type Georgia tektite. Geochim Cosmochim Acta, 1995, 59: 4071–4082

    Article  Google Scholar 

  3. Staudacher T, Jessberger E K, Dominik B, et al. 40Ar-39Ar ages of rocks and glasses from the Nördlinger Ries and the temperature history of impact breccias. J Geophys, 1982, 51: 1–11

    Google Scholar 

  4. Laurenzi M A, Bigazzi G, Balestrieri M L. 40Ar/39Ar geochronology of central European tektites (moldavites). Meteorit Planet Sci, 2003, 38: 887–893

    Article  Google Scholar 

  5. Koeberl C, Bottomley R, Glass B P, et al. Geochemistry and age of Ivory Coast tektites and microtektites. Geochim Cosmochim Acta, 1997, 61: 1745–1772

    Article  Google Scholar 

  6. Izett G A, Obradovich J D. Laser-fusion 40Ar/39Ar ages of Australasian tektites (abstract). Lunar Planet Sci, 1992, 23: 593–594

    Google Scholar 

  7. Glass B P. Tektites and microtektites: Key facts and inferences. Tectonophysics, 1990, 171: 393–404

    Article  Google Scholar 

  8. Lee M Y, Wei K Y. Australasian microtektites in the South China Sea and the western Philippine Sea: Implications for age, size and location of the impact crater. Meteorit Planet Sci, 2000, 35: 1151–1155

    Article  Google Scholar 

  9. Lacroix A. Les tectites sans formes figuree de I’Indochine. C R Acad Sci Paris, 1935, 200: 2129–2132

    Google Scholar 

  10. Koeberl C. Geochemistry and origin of Muong Nong-type tektites. Geochim Cosmochim Acta, 1992, 56: 1033–1064

    Article  Google Scholar 

  11. Wasson J T. Layered tektites: A multiple impact origin for the Australasian tektites. Earth Planet Sci Lett, 1991, 102: 95–109

    Article  Google Scholar 

  12. Blum J D, Papanastassiou D A, Koeberl C, et al. Nd and Sr isotopic study of Australasian tektites: New constraints on the provenance and age of target material. Geochim Cosmochim Acta, 1992, 56: 483–492

    Article  Google Scholar 

  13. Koeberl C. Tektite origin by hypervelocity asteroidal or cometary impact: Target rocks, source craters, and mechanisms. In: Dressler B O, Grieve R A F, Sharpton V L, eds. Large Meteorite Impacts and Planetary Evolution. Colorado: Geological Society of America, 1994. 133–152

    Google Scholar 

  14. Koeberl C, Poag C W, Reimold W U, et al. Impact origin of the Chesapeake Bay structure and the source of North American tektites. Science, 1996, 271: 1263–1266

    Article  Google Scholar 

  15. Engelhardt W V, Luft E, Arndt J, et al. Origin of moldavites. Geochim Cosmochim Acta, 1987, 51: 1425–1443

    Article  Google Scholar 

  16. Koeberl C, Reimold W U, Blum J B, et al. Petrology and geochemistry of target rocks from the Bosumtwi impact structure, Ghana, and comparison with Ivory Coast tektites. Geochim Cosmochim Acta, 1998, 62: 2179–2196

    Article  Google Scholar 

  17. Stauffer P H. Anatomy of the Australasian tektite strewn field and the possible site of its source crater. In: Proceedings of the 3rd Regional Conference on Geology and Mineral Resources of Southeast Asia, Bangkok, Thailand, 1978. 285–289

  18. Schnetzler C C. Mechanism of Muong Nong-type tektite formation and speculation on the source of Australasian tektites. Meteoritics, 1992, 27: 154–165

    Google Scholar 

  19. Glass B P, Wu J. Coesite and shocked quartz discovered in the Australasian and North American microtektite layers. Geology, 1993, 21: 435–438

    Article  Google Scholar 

  20. Hartung J B, Koeberl C. In search of the Australasian tektite source crater: The Tonle Sap hypothesis. Meteoritics, 1994, 29: 411–416

    Google Scholar 

  21. Ma P, Aggrey K, Tonzola C, et al. Beryllium-10 in Australasian tektites; constraints on the location of the source crater. Geochim Cosmochim Acta, 2004, 68: 3883–3896

    Article  Google Scholar 

  22. Xu H Q, Hu G H, Zhong H H, et al. A preliminary study on the chemical composition of qionglei tektites in China (in Chinese). Geochemistry, 1983, 3: 322–328

    Google Scholar 

  23. Lee Y T, Chen J C, Ho K S, et al. Geochemical studies of tektites from East Asia. Geochemical Journal, 2004, 38: 1–17

    Google Scholar 

  24. Ho K S, Chen J C. Geochemistry and origin of tektites from the Penglei area, Hainan Province, southern China. J Southeast Asian Earth Sci, 1996, 13: 61–72

    Article  Google Scholar 

  25. Hsu W, Guan Y, Wang H, et al. The lherzolitic shergottite Grove Mountains 99027: Rare earth element geochemistry. Meteorit Planet Sci, 2004, 39: 701–709

    Article  Google Scholar 

  26. Zinner E, Crozaz G. A method for the quantitative measurement of rare earth elements in the ion microprobe. Int J Mass Spectr Ion Processes, 1986, 69: 17–38

    Article  Google Scholar 

  27. Chapman D A, Scheiber L C. Chemical investigation of Australasian tektites. J Geophys Res, 1969, 74: 6737–6794

    Article  Google Scholar 

  28. Koeberl C. The geochemistry of tektites: An overview. Tectonophysics, 1990, 171: 405–422

    Article  Google Scholar 

  29. Palme H, Beer H. Abundances of the elements in the solar system. In: Voigt H H, ed. Landolt-Börnstein, Group VI: Astronomy and Astrophysics: Instruments; Methods; Solar System. Berlin: Springer, 1993. 196–221

    Google Scholar 

  30. Glass B P, Pizzuto J E. Geographical variation in Australasian microtektite concentrations: Implications concerning the location and size of the source crater. J Geophys Res, 1994, 99: 19075–19081

    Article  Google Scholar 

  31. Amare K, Koeberl C. Variation of chemical composition in Australasian tektites from different localities in Vietnam. Meteorit Planet Sci, 2006, 42: 107–123

    Article  Google Scholar 

  32. Barnes V E, Pitakpaivan K. Origin of indochinite tektites. Proc Nat Acad Sci USA, 1962, 48: 947–955

    Article  Google Scholar 

  33. Wasson J T. A multiple-impact origin of Southeast Asian tektites. Lunar Planet Sci, 1987, XWI: 1062–1063

  34. Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications, 1985. 312

    Google Scholar 

  35. Zhang F, Huang Z T, Mo J Y. Fission track ages of tektites from Bobai and Baso Basin in Guangxi, China (in Chinese). Chin Sci Bull, 1994, 15: 1396–1398

    Google Scholar 

  36. Liu S S, Zhang F. Dating by Fission Tracks. Beijing: Geological Publishing House, 1985. 12–13

    Google Scholar 

  37. Yan Z, Yuan B Y, Ye L F. Spaltspurendatierung and Hainan-inseltektiten (Legungmo) (in Chinese). Sci Geol Sin, 1979, 1: 37–42

    Google Scholar 

  38. Fleischer R L, Price P B. Glass dating by fission fragment tracks. J Geophys Res, 1964, 69: 331–339

    Article  Google Scholar 

  39. Suess F E. Die Herkunft der Moldavite und verwandter Gläser. Jahrb Geol Reichsanstalt, 1900, 50: 193–382

    Google Scholar 

  40. O’Keefe J A. The origin of tektites. Meteoritics, 1994, 29: 73–78

    Google Scholar 

  41. Nicolaysen L O. Tektites: Ejecta from massive cratering events, caused by periodic escape and detonation of deep mantle fluids. In: International Workshop Cryptoexplosions and Catastrophes in the Geological Record, Parys, South Africa, 1987. 15

  42. Wampler J M, Smith D M, Cameron A E. Isotopic comparison of lead in tektites with lead in earth materials. Geochim Cosmochim Acta, 1969, 33: 1045–1055

    Article  Google Scholar 

  43. Serefiddin F, Herzog G F, Koeberl C. Beryllium-10 concentrations of tektites from the Ivory Coast and from Central Europe: Evidence for near-surface residence of precursor materials. Geochim Cosmochim Acta, 2007, 71: 1574–1582

    Article  Google Scholar 

  44. Condie K C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem Geol, 1993, 104: 1–37

    Article  Google Scholar 

  45. Sato T. Regional geology and stratigraphy: Southeast Asia and Japan. In: Westermann G E G, ed. The Jurassic of the Circum-Pacific. Cambridge: Cambridge University Press, 1992. 194–213

    Google Scholar 

  46. Wasson J T, Heins W A. Tektites and climate. J Geophys Res, 1993, 98: 3043–3052

    Article  Google Scholar 

  47. Wasson J T. Large aerial bursts: An important class of terrestrial accretionary events. Astrobiology, 2003, 3: 163–179

    Article  Google Scholar 

  48. Ridd M F. The Mesozoic: Thailand. In: Moullade M, Nairn A E M, eds. The Phanerozoic Geology of the World II. New York: Elsevier, 1978. 145–161

    Google Scholar 

  49. Meisel T, Koeberl C, Ford R J. Geochemistry of Darwin impact glass and target rocks. Geochim Cosmochim Acta, 1990, 54: 1463–1474

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiBiao Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, S., Guan, Y. & Hsu, W. Geochemistry and origin of tektites from Guilin of Guangxi, Guangdong and Hainan. Sci. China Earth Sci. 54, 349–358 (2011). https://doi.org/10.1007/s11430-010-4146-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-010-4146-1

Keywords

Navigation