Skip to main content
Log in

Sources and distribution of polycyclic aromatic hydrocarbons of different glaciers over the Tibetan Plateau

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Twenty snow samples were collected from the Qiyi glacier in Qilian Mountains, the Yuzhufeng glacier in eastern Kunlun Mountains, the Xiaodongkemadi glacier in Tanggula Mountains, and the Gurenhekou glacier in Nyainqêntanglha Range over the Tibetan Plateau. The concentration and distribution features of sixteen priority Polycyclic Aromatic Hydrocarbons (PAHs) were determined by gas chromatography equipped with a mass spectrometry detector (GC-MS). The sources of these PAHs were explored as well. Our results indicated that the average concentrations of PAHs in snow were in the range of 20.45–60.57 ng/L. Maximum PAHs levels were found in the YZF glacier and minimum in the XDKMD glacier. However, no apparent regional distribution pattern of PAHs was found in the glaciers over the Tibetan Plateau. Moreover, the 2–4 ring low molecular weight PAHs predominated in snow samples and the concentrations of phenanthrene was the highest. Integrated factor analysis and isomer pair ratios suggested that PAHs of glaciers over the Tibetan Plateau were derived from low temperature combustion of coal and biomass, and partially from the exhaust gas of locomotives. Air mass back trajectory indicated that organic compounds detected in snowpit of these four glaciers, in the period of time they represented, mainly came from Central Asia and the arid area of Northwest China by westerly wind circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olivella M A, Ribalta T G, de Febrer A R, et al. Distribution of polycyclic aromatic hydrocarbons in riverine waters after Mediterranean forest fires. Sci Total Environ, 2006, 355: 156–166

    Article  Google Scholar 

  2. Ribes A, Grimalt J O, Garcia C J T, et al. Polycyclic aromatic hydrocarbons in mountain soils of the subtropical Atlantic. J Environ Qual, 2003, 32: 977–987

    Article  Google Scholar 

  3. Wilson S C, Jones K C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A review. Environ Pollut, 1993, 81: 229–249

    Article  Google Scholar 

  4. Bake S O, Field R A, Goldstone M E, et al. A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behavior. Water Air Soil Pollut, 1991, 60: 279–300

    Article  Google Scholar 

  5. Simoneit B R T. A review of biomarker compounds as source indicators and tracers for air pollution. Environ Sci Pollut Res, 1999, 6: 159–169

    Article  Google Scholar 

  6. Garban B, Blanchoud H, Motelay-Massei A, et al. Atmospheric bulk deposition of PAHs onto France: Trends from urban to remote sites. Atmos Environ, 2002, 36: 5395–5403

    Article  Google Scholar 

  7. Vehviläinen J, Isaksson E, Moore J C, et al. A 20th-century record of naphthalene in an ice core from Svalbard. Ann Glaciol, 2002, 35: 257–260

    Article  Google Scholar 

  8. Van Meter P C, Mahler B J, Furlong E T. Urban sprawl leaves its PAH signature. Environ Sci Technol, 2000, 34: 4064–4070

    Article  Google Scholar 

  9. Chen B, Xuan X, Zhu L, et al. Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou city, China. Water Res, 2004, 38: 3558–3568

    Article  Google Scholar 

  10. Yang X Y, Okada Y, Tang N, et al. Long range transport of polycyclic aromatic hydrocarbons from China to Japan. Atmos Environ, 2007, 41: 2701–2718

    Google Scholar 

  11. Sanders M, Sivertsen S, Scott G. Origin and distribution of polycyclic aromatic hydrocarbons in surficial sediments from the Savannah River. Arch Environ Contam Toxicol, 2002, 43: 438–448

    Article  Google Scholar 

  12. Savinov V M, Savinova T N, Matishov G G, et al. Polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs) in bottom sediments of the Guba Pechenga, Barents Sea, Russia. Sci Total Environ, 2003, 306: 39–56

    Article  Google Scholar 

  13. Tao S, Cui Y H, Xu F L, et al. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. Sci Total Environ, 2004, 320: 11–24

    Article  Google Scholar 

  14. Honda K, Mizukami M, Ueda Y, et al. Residue level of polycyclic aromatic hydrocarbons in Japanese paddy soils from 1959 to 2002. Chemosphere, 2007, 68: 1763–1771

    Article  Google Scholar 

  15. Wania F, Hoff J T, Jia C Q, et al. The effects of snow and ice on the environmental behavior of hydrophobic organic chemicals. Environ Pollut, 1998, 102: 25–41

    Article  Google Scholar 

  16. Meyer T, Wania F. Organic contaminant amplification during snowmelt. Water Res, 2008, 42: 1847–1865

    Article  Google Scholar 

  17. Carrera G, Fernandez P, Vilanova R M, et al. Persistent organic pollutants in snow from European high mountain areas. Atmos Environ, 2001, 35: 245–254

    Article  Google Scholar 

  18. Nemirovskaya I A. Organic compounds in the snow-ice cover of eastern Antarctica. Geochem Int, 2006, 44: 825–834

    Article  Google Scholar 

  19. Jaffrezo J L, Masclet P, Clain M P, et al. Transfer function of polycyclic aromatic hydrocarbons from the atmosphere to the polar ice. I: Determination of atmospheric concentrations at dye 3, Greenland. Atmos Environ, 1993, 27A: 2781–2785

    Google Scholar 

  20. Loewen M D, Sharma S, Tomy G, et al. Long range atmospheric transport and deposition of persistent organic pollutants and mercury in the Himalaya. Aquat Eco Heal Mana, 2005, 8: 223–233

    Article  Google Scholar 

  21. Wang X P, Yao T D, Wang P L, et al. The recent deposition of persistent organic pollutants and mercury to the Dasuopu glaciers, Mt. Xixiabangma, central Himalayas. Sci Total Environ, 2008, 394: 134–143

    Article  Google Scholar 

  22. Wang X P, Xu B Q, Kang S C, et al. The historical residue trends of DDT, hexachlorocyclohexanes and polycyclic aromatic hydrocarbons in an ice core from Mt. Everest, central Himalayas, China. Atmos Environ, 2008, 42: 6699–6709

    Google Scholar 

  23. Wang X P, Yao T D, Cong Z Y, et al. Concentration level and distribution of polycyclic aromatic hydrocarbons in soil and grass around Mt. Qomolangma, China. Chin Sci Bull, 2007, 52: 1405–1413

    Article  Google Scholar 

  24. Welch H E, Muir D C G, Billeck B N, et al. Brown snow: A long-range transport event in the Canadian Arctic. Environ Sci Technol, 1991, 25: 280–286

    Article  Google Scholar 

  25. Jaffrezo J L, Clain M P, Masclet P, et al. Polycyclic aromatic hydrocarbons in the polar ice of Greenland, geochemical use of these atmospheric tracers. Atmos Environ, 1994, 28: 1139–1145

    Article  Google Scholar 

  26. Kawamura K, Suzuki I, Fuji Y, et al. Ice core record of polycyclic aromatic hydrocarbons over the past 400 years. Naturwissenschaften, 1994, 81: 502–505

    Article  Google Scholar 

  27. Bodnár E, Hlavay J, Atmospheric deposition of polycyclic aromatic hydrocarbons on the Lake Balaton, Hungary. Microchem J, 2005, 79: 213–220

    Article  Google Scholar 

  28. Mille G, Asia L, Guiliano M, et al. Hydrocarbons in coastal sediments from the mediterranean sea (Gulf of Fos area, France). Mar Pollut Bull, 2007, 54: 566–575

    Article  Google Scholar 

  29. Franz T P, Eisenreich S J, Snow scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in Minnesota. Environ Sci Technol, 1998, 32: 1771–1778

    Article  Google Scholar 

  30. Su Y, Lei Y D, Wania F, et al. Regressing gas/particle partitioning data for polycyclic aromatic hydrocarbons. Environ Sci Technol, 2006, 40: 3558–3564

    Article  Google Scholar 

  31. Daly G L, Wania F. Organic contaminants in mountains. Environ Sci Technol, 2005, 39: 385–398

    Article  Google Scholar 

  32. Peters A J, Gregor D J, Teixeira C, et al. The recent depositional trend of polycyclic aromatic hydrocarbons and elemental carbon to the Agassiz Ice Cap, Ellesmere Island, Canada. Sci Total Environ, 1995, 160/161: 167–179

    Article  Google Scholar 

  33. Wang X P, Yao T D, Cong Z Y. Gradient distribution of persistent organic contaminants along northern slope of central-Himalayas, China. Sci Total Environ, 2006, 372: 193–202

    Article  Google Scholar 

  34. Liu X, Zhang G, Jones K C, et al. Compositional fractionation of polycyclic aromatic hydrocarbons (PAHs) in mosses (Hypnum plumaeformae WILS.) from the northern slope of Nanling Mountains, South China. Atmos Environ, 2005, 39: 5490–5499

    Article  Google Scholar 

  35. Guinan J, Charlesworth M, Service M, et al. Sources and geochemical constraints of polycyclic aromatic hydrocarbons (PAHs) in sediments and mussels of two Northern Irish Sea-loughs. Mar Pollut Bull, 2001, 42: 1073–1081

    Article  Google Scholar 

  36. Lee M L, Prado G P, Howard J B, et al. Source identification of urban airborne polycyclic aromatic hydrocarbons by chromatographic mass spectrometry and high resolution mass spectrometry. Biomed Mass Spectrom, 1977, 4: 182–185

    Article  Google Scholar 

  37. Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem, 2002, 32: 489–515

    Article  Google Scholar 

  38. Li Q L, Wang N L, Wu X B, et al. Compositional characteristics of n-alkanes of the glaciers over the Tibetan Plateau and their environmental and climatic significances. Sci China Ser D-Earth Sci, 2009, 52: 1679–1870

    Article  Google Scholar 

  39. Grimmer G, Jacob J, Naujack K W, et al. Profile of the polycyclic aromatic compounds from crude oils-inventory by GC, GC-MS. PAH in environmental Materials: Part 3, Fresenius. Analyt Chem, 1983, 316: 29–36

    Google Scholar 

  40. Masclet P, Hoyau V, Jaffrezo J L, et al. Polycyclic aromatic hydrocarbon deposition on the ice sheet of Greenland. Part I: Superficial snow. Atmos Environ, 2000, 34: 3195–3207

    Article  Google Scholar 

  41. Mai B X, Qi S H, Zeng E Y, et al. Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: Assessment of input sources and transport pathways using compositional analysis. Environ Sci Technol, 2003, 37: 4855–4863

    Article  Google Scholar 

  42. Mastral A M, Callén M, Murillo R. Assessment of PAH emissions as a function of coal combustion variables. Fuel, 1996, 75: 1533–1536

    Article  Google Scholar 

  43. Khalili N R, Scheff P A, Holsen T M. PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ, 1995, 29: 533–542

    Article  Google Scholar 

  44. Simcik M F, Eisenreich S J, Lioy P J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos Environ, 1999, 33: 5071–5079

    Article  Google Scholar 

  45. Tian L D, Yao T D, Sun W Z, et al. Relationship between δD and δ18O in precipitation on north and south of the Tibetan Plateau and moisture recycling. Sci China Ser D-Earth Sci, 2001, 44: 789–796

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QuanLian Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Wang, N., Wu, X. et al. Sources and distribution of polycyclic aromatic hydrocarbons of different glaciers over the Tibetan Plateau. Sci. China Earth Sci. 54, 1189–1198 (2011). https://doi.org/10.1007/s11430-010-4047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-010-4047-3

Keywords

Navigation