Skip to main content
Log in

Os isotope dating and growth hiatuses of Co-rich crust from central Pacific

  • Published:
Science in China Series D: Earth Sciences Aims and scope Submit manuscript

Abstract

Up to now, accurate determination of the growth age and hiatuses of the Co-rich crust is still a difficult work, which constrains the researches on the genesis, growth process, controlling factors, regional tectonics, paleo-oceanographic background, etc. of the Co-rich crust. This paper describes our work in determining the initial growth age of the Co-rich crust to be of the late Cretaceous Campanian Stage (about 75–80 Ma), by selecting the Co-rich crust with clear multi-layer structures in a central Pacific seamount for layer-by-layer sample analysis and using a number of chronological methods, such as Co flux dating, dating by correlation with 187Os/188Os evolution curves of seawater, and stratigraphic division by calcareous nannofossils. We have also discovered growth hiatuses with different time intervals in the early Paleocene, middle Eocene, late Eocene and early-middle Miocene, respectively. These results have provided an important age background for further researches on the Co-rich crust growth process and the paleo-oceanographic environment evolution thereby revealed in the said region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halbach P, Segl M, Puteanus D, et al. Relationship between Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas. Nature, 1983, 304: 716–719

    Article  Google Scholar 

  2. Henderson G M, Burton K W. Using (U-234/U-238) to assess diffusion rates of isotope tracers in ferromanganese crusts. Earth Planet Sci Lett, 1999, 170: 169–179

    Article  Google Scholar 

  3. Cheng Z B, Si X F, Wu Y H, et al. Growth ages of ferromanganese crusts from the western and central pacific: Comparison between nannofossil analysis and 10Be dating. Chin Sci Bull, 2006, 51(24): 3035–3040

    Article  Google Scholar 

  4. VonderHaar D L, Mahoney J J, McMurtry G M. An evaluation of strontium isotopic dating of ferromanganese oxides in a marine hydrogenous ferromanganese crust. Geochim Cosmochim Acta, 1995, 59(20): 4267–4277

    Article  Google Scholar 

  5. O’Nions R K. Secular variation of Nd and Pb isotopes in ferromanganese crusts from the Atlantic, Indian and Pacific Ocean. Earth Planet Sci Lett, 1998, 155: 15–28

    Article  Google Scholar 

  6. Ito T, Usui A, Kajiwara Y, et al. Strontium isotopic compositions and paleoceanographic implication of fossil manganese nodules in DSDP/ODP cores, Leg 1-126. Geochim Cosmochim Acta, 1998, 62(9): 1545–1554

    Article  Google Scholar 

  7. Ling H F, Burton K W, O’Nions R K, et al. Evolution of Nd and Pb isotopes in Central Pacific seawater from ferromanganese crusts. Earth Planet Sci Lett, 1997, 146: 1–12

    Article  Google Scholar 

  8. Ling H F, Jiang S Y, Frank M, et al. Differing controls over the Cenozoic Pb and Nd isotope evolution of deepwater in the central North Pacific Ocean. Earth Planet Sci Lett, 2005, 232: 345–361

    Article  Google Scholar 

  9. Ingram B L, Hein J R, Farmer G L, et al. Age determinations and growth rates of Pacific ferromanganese deposits using strontium isotopes. Geochim Cosmochim Acta, 1990, 54: 1709–1721

    Article  Google Scholar 

  10. Manheim F T. Marine cobalt resources. Science, 1986, 232: 600–608

    Article  Google Scholar 

  11. Manheim F T, Lane-Bostwick C M. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor. Nature, 1988, 335: 59–62

    Article  Google Scholar 

  12. Frank, M, O’Nions R K, Hein J R, et al. 60 Myr records of major elements and Pb-Nd isotopes from hydrogenous ferromanganese crusts: Reconstruction of seawater paleochemistry. Geochim Cosmochim Acta, 1999, 63: 1689–1708

    Article  Google Scholar 

  13. Cowen J P. Calcareous nannofossil biostratigraphic dating of a ferromanganese crust from Schumann Seamount. Mar Geol, 1993, 115: 289–306

    Article  Google Scholar 

  14. Pan J H, Liu S Q, Zhong S L. Rasearch on the age of Cobalt-rich crusts in western Pacific. Geol Rev (in Chinese), 2002, 48(50): 463–467

    Google Scholar 

  15. Su X, Ma W L, Cheng Z B. Calcareous nannofossil biostratigraphy for Co-rich ferromanganese crusts from central Pacific seamounts. Earth Sci-J China Univ Geosci (in Chinese), 2004, 29(2): 141–147

    Google Scholar 

  16. Cai Y H, Huang Y P. Review on dating of Co-rich crusts. Ma Sci (in Chinese), 2003, 27(7): 32–37

    Google Scholar 

  17. Peucker-Ehrenbrink B, Ravizza G, Hofmann A W. The marin 187Os/186Os record of the past 80 million years. Earth Planet Sci Lett, 1995, 130: 155–167

    Article  Google Scholar 

  18. Ravizza G, Mascle J, Lohmann G P, et al. Osmium-isotope geochemistry of site 959: Implications for Re-Os sedimentary geochro nology and reconstruction of past variations in the Os-isotopic composition of seawater. Proceedings of the Ocean Drilling Program, Scientific Results, 1998, 159: 181–186

    Google Scholar 

  19. Klemm V, Levasseur S, Frank M, et al. Osmium isotope stratigraphy of a marine ferromanganese crust. Earth Planet Sci Lett, 2005, 238: 42–48

    Article  Google Scholar 

  20. Fu Y Z, Peng J T, Qu W J, et al. Os isotopic compositions of a cobalt-rich ferromanganese crust profile in Central Pacific. Chin Sci Bull, 2005, 50(18): 2106–2112

    Article  Google Scholar 

  21. Du A D, Zhao D M, Wang S X, et al. Precise Re-Os dating for molybdenite by ID-NTIMS with Carius tube sample preparation. Rock Min Analysis (in Chinese), 2001, 20(4): 247–252

    Google Scholar 

  22. Qu W J, Du A D. Highly precise Re-Os dating of molybdenite by ICP-MS with carius tube sample digestion. Rock Min Analysis (in Chinese), 2003, 22(4): 254–257

    Google Scholar 

  23. Du A, Wu S, Sun D, et al. Preparation and certification of Re-Os dating reference materials: Molybdenite HLP and JDC. Geostand Geoanalytical Res, 2004, 28(1): 41–52

    Article  Google Scholar 

  24. Li J S, Fang N Q, Ding X, et al. Microstructure and element abundance of Co-rich crust: Evidences from the layered sample MHD79 collected from the central Pacific. Geoscience (in Chinese), 2007, 21(3): 518–523

    Google Scholar 

  25. McDanie D K, Walker R J, Hemming S R, et al. Sources of osmium to the modern oceans: New evidence from the 190Pt-186Os system. Geochim Cosmochim Acta, 2004, 68(6): 1243–1252

    Article  Google Scholar 

  26. Williams G A, Turekian K K. The glacial-interglacial variation of seawater osmium isotopes as recorded in Santa Barbara Basin. Earth Planet Sci Lett, 2004, 228: 379–389

    Article  Google Scholar 

  27. Dalai T K, Ravizza G. Evaluation of osmium isotopic and iridium as paleoflux tracers in pelagic carbonates. Geochim Cosmochim Acta, 2006, 70: 3928–3942

    Article  Google Scholar 

  28. Dalaia T K, Suzukib K, Minagawa M, et al. Variations in seawater osmium isotope composition since the last glacial maximum: A case study from the Japan Sea. Chem Geol, 2005, 220: 303–314

    Article  Google Scholar 

  29. Sharma M, Papanastassiou D A, Wasserburg G J. The concentration and isotopic composition of Osmiumin the Oceans. Geochim Cosmochim Acta, 1997, 61: 3287–3299

    Article  Google Scholar 

  30. Yang J H, Jing S Y, Ling H F, et al. Re-Os isotope tracing and dating of black shales and oceanic anoxic events. Earth Sci Front (in Chinese), 2005, 12(2): 143–150

    Google Scholar 

  31. Peucker-Ehrenbrink B, Ravizza G. The marine osmium isotope record. Terra Nova, 2000, 12(5): 205–219

    Article  Google Scholar 

  32. Kafanov, A I, Volvenko I V. Bivalve molluscs and Cenozoic paleoclimatic events in the northwestern Pacific Ocean. Palaeogeogr Palaeoclimatol Palaeoecol, 1997, 129: 119–153

    Article  Google Scholar 

  33. Kashiwagi H, Shikazono N. Climate change during Cenozoic inferred from global carbon cycle model including igneous and hydrothermal activities. Palaeogeogr Palaeoclimatol Palaeoecol, 2003, 199: 167–185

    Article  Google Scholar 

  34. Zachos J C, Stott L D, Lohmann K C. Evolution of Early Cenozoic marine temperatures. Paleoceanography, 1994, 9(2): 353–387

    Article  Google Scholar 

  35. Zachos, J C, Quinn T M, Salamy K A. High-resolution (104 years) deep-sea foraminiferal stable isotope records of the Eocene-Oligocene climate transition. Paleoceanography, 1996, 11: 251–266

    Article  Google Scholar 

  36. Diester-Haass L. Late Eocene-Oligocene paleoceanography in the southern Indian Ocean (ODP Site 744). Mar Geol, 1996, 130: 99–119

    Article  Google Scholar 

  37. Dieste-Haass, L, Zahn R. Paleoproductivity increase at the Eocene-Oligocene Climatic transition: ODP/DSDP Sites 763 and 592. Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 172: 153–170

    Article  Google Scholar 

  38. Dieste-Haass L, Zachos, J C. The Eocene-Oligocene transition in the equatorial Atlantic (ODIP Site 925): Paleoproductivity increase and positive δ13C excursion. In: Prothero D R, Ivany L C, Nesbitt E A, eds. From Greenhouse to Icehouse: The Marine Eocene-Oligocene Transition. New York: Columbia University Press, 2003. 397–416

    Google Scholar 

  39. Salamy K A, Zachos J C. Latest Eocene-Early Oligocene climate change and southern Ocean fertility: Inferences from sediment accumulation and stable isotope data. Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 145: 61–77

    Article  Google Scholar 

  40. Tuo S T, Liu Z F, Zhao Q H, et al. The earliest Oligocene glacial maximum: Records from ODP site 1265, south Atlantic. Earth Sci-J China Univ Geosci (in Chinese), 2006, 31(2): 151–158

    Google Scholar 

  41. Zachos J C, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686–693

    Article  Google Scholar 

  42. Tuo S T, Liu Z F. Global climate event at the Eocene-Oligocene transition: From greenhouse to icehouse. Adv Earth Sci (in Chinese), 2003, 18(5): 691–696

    Google Scholar 

  43. Department of Marine Geology Tongji University. Introduction to Paleoceanography (in Chinese). Shanghai: Tongji University Press, 1989. 222–232

    Google Scholar 

  44. Zachos J C, Lohmann K C, Walker J C G, et al. Abrupt climate change and transient climates in the Paleogene: A marine perspective. J Geol, 1993, 101: 193–215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NianQiao Fang.

Additional information

Supported by China Ocean Mineral Resources Research and Development Association “10th Five Year” Topic (Grant No. DY105-01-04-14), International Science and Technology Cooperation Project from Ministry of Science and Technology of China (Grant No: 2006DFB21620) and the National Natural Science Foundation of China (Grant No. 40706029)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Fang, N., Qu, W. et al. Os isotope dating and growth hiatuses of Co-rich crust from central Pacific. Sci. China Ser. D-Earth Sci. 51, 1452–1459 (2008). https://doi.org/10.1007/s11430-008-0100-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-008-0100-x

Keywords

Navigation