Skip to main content
Log in

The genetic basis and process of inbreeding depression in an elite hybrid rice

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Inbreeding depression refers to the reduced performance arising from increased homozygosity, a phenomenon that is the reverse of heterosis and exists among plants and animals. As a natural self-pollinated crop with strong heterosis, the mechanism of inbreeding depression in rice is largely unknown. To understand the genetic basis of inbreeding depression, we constructed a successive inbreeding population from the F2 to F4 generation and observed inbreeding depression of all heterotic traits in the progeny along with the decay of heterozygosity in each generation. The expected depression effect was largely explained by 13 QTLs showing dominant effects for spikelets per panicle, 11 for primary branches, and 12 for secondary branches, and these loci constitute the main correlation between heterosis and inbreeding depression. However, the genetic basis of inbreeding depression is also distinct from that of heterosis, such that a biased transmission ratio of alleles for QTLs with either dominant or additive effects in four segregation distortion regions would result in minor effects in expected depression. Noticeably, two-locus interactions may change the extent and direction of the depression effects of the target loci, and overall interactions would promote inbreeding depression among generations. Using an F2:3 variation population, the actual performance of the loci showing expected depression was evaluated considering the heterozygosity decay in the background after inbreeding. We found inconsistent or various degrees of background depression from the F2 to F3 generation assuming different genotypes of the target locus, which may affect the actual depression effect of the locus due to epistasis. The results suggest that the genetic architecture of inbreeding depression and heterosis is closely linked but also differs in their intrinsic mechanisms, which expand our understanding of the whole-genome architecture of inbreeding depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam, M.F., Khan, M.R., Nuruzzaman, M., Parvez, S., Swaraz, A.M., Alam, I., and Ahsan, N. (2004). Genetic basis of heterosis and inbreeding depression in rice (Oryza sativa L.). J Zheijang Univ Sci 5, 406–411.

    Article  CAS  Google Scholar 

  • Armbruster, P., and Reed, D.H. (2005). Inbreeding depression in benign and stressful environments. Heredity 95, 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Becher, H., Jackson, B.C., and Charlesworth, B. (2020). Patterns of genetic variability in genomic regions with low rates of recombination. Curr Biol 30, 94–100.e3.

    Article  CAS  PubMed  Google Scholar 

  • Botelho, F.B.S., Bruzi, A.T., Lima, I.P., Rodrigues, C.S., and de C. Botelho, R.T. (2016). Inbreeding depression in single, three way and double-cross hybrids of maize. Genet Mol Res 15, 1–7.

    Article  Google Scholar 

  • Byers, D.L., and Waller, D.M. (1999). Do plant populations purge their genetic load? Effects of population size and mating history on inbreeding depression. Annu Rev Ecol Syst 30, 479–513.

    Article  Google Scholar 

  • Charlesworth, B., Charlesworth, D., and Morgan, M.T. (1990). Genetic loads and estimates of mutation rates in highly inbred plant populations. Nature 347, 380–382.

    Article  Google Scholar 

  • Charlesworth, D., and Charlesworth, B. (1987). Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18, 237–268.

    Article  Google Scholar 

  • Charlesworth, D., and Willis, J.H. (2009). The genetics of inbreeding depression. Nat Rev Genet 10, 783–796.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z.J. (2013). Genomic and epigenetic insights into the molecular bases of heterosis. Nat Rev Genet 14, 471–482.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, S.H., Zhuang, J.Y., Fan, Y.Y., Du, J.H., and Cao, L.Y. (2007). Progress in research and development on hybrid rice: a super-domesticate in China. Ann Bot 100, 959–966.

    Article  PubMed  PubMed Central  Google Scholar 

  • Darwin, C.R. (1876). The Effects of Cross and Self Fertilisation in the Vegetable Kingdom. London: John Murray.

    Book  Google Scholar 

  • Fishman, L. (2001). Inbreeding depression in two populations of Arenaria uniflora (Caryophyllaceae) with contrasting mating systems. Heredity 86, 184–194.

    Article  CAS  PubMed  Google Scholar 

  • Fox, C.W., and Reed, D.H. (2011). Inbreeding depression increases with environmental stress: an experimental study and meta-analysis. Evolution 65, 246–258.

    Article  PubMed  Google Scholar 

  • Gilbert, K.J., Pouyet, F., Excoffier, L., and Peischl, S. (2020). Transition from background selection to associative overdominance promotes diversity in regions of low recombination. Curr Biol 30, 101–107.e3.

    Article  CAS  PubMed  Google Scholar 

  • Hedrick, P.W., and Garcia-Dorado, A. (2016). Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol Evol 31, 940–952.

    Article  PubMed  Google Scholar 

  • Hedrick, P.W., and Kalinowski, S.T. (2000). Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31, 139–162.

    Article  Google Scholar 

  • Hua, J., Xing, Y., Wu, W., Xu, C., Sun, X., Yu, S., and Zhang, Q. (2003). Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100, 2574–2579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua, J.P., Xing, Y.Z., Xu, C.G., Sun, X.L., Yu, S.B., and Zhang, Q. (2002). Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics 162, 1885–1895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, X., Yang, S., Gong, J., Zhao, Q., Feng, Q., Zhan, Q., Zhao, Y., Li, W., Cheng, B., Xia, J., et al. (2016). Genomic architecture of heterosis for yield traits in rice. Nature 537, 629–633.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Yang, S., Gong, J., Zhao, Y., Feng, Q., Gong, H., Li, W., Zhan, Q., Cheng, B., Xia, J., et al. (2015). Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat Commun 6, 6258–6266.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D.F. (1939). Continued inbreeding in maize. Genetics 24, 462–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lande, R., and Schemske, D.W. (1985). The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39, 24–40.

    PubMed  Google Scholar 

  • Li, Z.K., Luo, L.J., Mei, H.W., Wang, D.L., Shu, Q.Y., Tabien, R., Zhong, D.B., Ying, C. S., Stansel, J.W., Khush, G.S., et al. (2001). Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158, 1737–1753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackay, I.J., Cockram, J., Howell, P., and Powell, W. (2021). Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding. Plant Biotechnol J 19, 26–34.

    Article  PubMed  Google Scholar 

  • McMullen, M.D., Kresovich, S., Villeda, H.S., Bradbury, P., Li, H., Sun, Q., Flint-Garcia, S., Thornsberry, J., Acharya, C., Bottoms, C., et al. (2009). Genetic properties of the maize nested association mapping population. Science 325, 737–740.

    Article  CAS  PubMed  Google Scholar 

  • Ouyang, Y., Li, X., and Zhang, Q. (2022). Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice. J Genet Genomics 49, 385–393.

    Article  PubMed  Google Scholar 

  • Remington, D.L., and O’Malley, D.M. (2000). Evaluation of major genetic loci contributing to inbreeding depression for survival and early growth in a selfed family of Pinus taeda. Evolution 54, 1580–1589.

    CAS  PubMed  Google Scholar 

  • Samayoa, L.F., Olukolu, B.A., Yang, C.J., Chen, Q., Stetter, M.G., York, A.M., Sanchez-Gonzalez, J.J., Glaubitz, J.C., Bradbury, P.J., Romay, M.C., et al. (2021). Domestication reshaped the genetic basis of inbreeding depression in a maize landrace compared to its wild relative, teosinte. PLoS Genet 17, e1009797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable, P.S., and Springer, N.M. (2013). Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64, 71–88.

    Article  CAS  PubMed  Google Scholar 

  • Wing, R.A., Purugganan, M.D., and Zhang, Q. (2018). The rice genome revolution: from an ancient grain to Green Super Rice. Nat Rev Genet 19, 505–517.

    Article  CAS  PubMed  Google Scholar 

  • Yao, H., Srivastava, S., Swyers, N., Han, F., Doerge, R.W., and Birchler, J.A. (2020). Inbreeding depression in genotypically matched diploid and tetraploid maize. Front Genet 11, 564928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yengo, L., Yang, J., Keller, M.C., Goddard, M.E., Wray, N.R., and Visscher, P.M. (2021). Genomic partitioning of inbreeding depression in humans. Am J Hum Genet 108, 1488–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, S.B., Li, J.X., Xu, C.G., Tan, Y.F., Gao, Y.J., Li, X.H., Zhang, Q., and Maroof, M.A.S. (1997). Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94, 9226–9231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun, L., and Agrawal, A.F. (2014). Variation in the strength of inbreeding depression across environments: effects of stress and density dependence. Evolution 68, 3599–3606.

    Article  PubMed  Google Scholar 

  • Zhang, C., Wang, P., Tang, D., Yang, Z., Lu, F., Qi, J., Tawari, N.R., Shang, Y., Li, C., and Huang, S. (2019). The genetic basis of inbreeding depression in potato. Nat Genet 51, 374–378.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Chen, L.L., Xing, F., Kudrna, D.A., Yao, W., Copetti, D., Mu, T., Li, W., Song, J.M., Xie, W., et al. (2016). Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proc Natl Acad Sci USA 113, E5163–E5171.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, G., Chen, Y., Yao, W., Zhang, C., Xie, W., Hua, J., Xing, Y., Xiao, J., and Zhang, Q. (2012). Genetic composition of yield heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 109, 15847–15852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key Research and Development Program of China (2022YFF1002100), the National Natural Science Foundation of China (31991223, 32341031, 32170622, 31821005), the Hubei Key R&D Program (2020BBA034), the Hubei Key R&D Program in Hongshan Lab (2021hszd005, 2022hszd017), and the Fundamental Research Founds for the Central Universities (2662023PY002). The total RNA data was sequenced on the high-throughput sequencing platform, part of phenotyping was performed on the crop phenotyping platform, and the computations were run on the bioinformatics computing platform (all the three platforms are housed in the National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yidan Ouyang.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Supporting Informations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Xu, Y., Che, J. et al. The genetic basis and process of inbreeding depression in an elite hybrid rice. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2547-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2547-2

Navigation