Skip to main content
Log in

A phase separation-fortified bi-specific adaptor for conditional tumor killing

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

A common approach in therapeutic protein development involves employing synthetic ligands with multivalency, enabling sophisticated control of signal transduction. Leveraging the emerging concept of liquid-liquid phase separation (LLPS) and its ability to organize cell surface receptors into functional compartments, we herein have designed modular ligands with phase-separation modalities to engineer programmable interreceptor communications and precise control of signal pathways, thus inducing the rapid, potent, and specific apoptosis of tumor cells. Despite their simplicity, these “triggers”, named phase-separated Tumor Killers (hereafter referred to as psTK), are sufficient to yield interreceptor clustering of death receptors (represented by DR5) and tumor-associated receptors, with notable features: LLPS-mediated robust high-order organization, well-choreographed conditional activation, and broad-spectrum capacity to potently induce apoptosis in tumor cells. The development of novel therapeutic proteins with phase-separation modalities showcases the power of spatially reorganizing signal transduction. This approach facilitates the diversification of cell fate and holds promising potential for targeted therapies against challenging tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Alexiou, P., Chatzopoulou, M., Pegklidou, K., and Demopoulos, V.J. (2010). RAGE: a multi-ligand receptor unveiling novel insights in health and disease. Curr Med Chem 17, 2232–2252.

    Article  CAS  PubMed  Google Scholar 

  • Angers, S., Salahpour, A., and Bouvier, M. (2002). Dimerization: an emerging concept for G protein-coupled receptor ontogeny and function. Annu Rev Pharmacol Toxicol 42, 409–435.

    Article  CAS  PubMed  Google Scholar 

  • Brünker, P., Wartha, K., Friess, T., Grau-Richards, S., Waldhauer, I., Koller, C.F., Weiser, B., Majety, M., Runza, V., Niu, H., et al. (2016). RG7386, a novel tetravalent FAP-DR5 antibody, effectively triggers FAP-dependent, avidity-driven DR5 hyperclustering and tumor cell apoptosis. Mol Cancer Ther 15, 946–957.

    Article  PubMed  Google Scholar 

  • Camidge, D.R., Herbst, R.S., Gordon, M.S., Eckhardt, S.G., Kurzrock, R., Durbin, B., Ing, J., Tohnya, T.M., Sager, J., Ashkenazi, A., et al. (2010). A phase I safety and pharmacokinetic study of the death receptor 5 agonistic antibody PRO95780 in patients with advanced malignancies. Clin Cancer Res 16, 1256–1263.

    Article  CAS  PubMed  Google Scholar 

  • Case, L.B., Ditlev, J.A., and Rosen, M.K. (2019). Regulation of transmembrane signaling by phase separation. Annu Rev Biophys 48, 465–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Wu, X., Wu, H., and Zhang, M. (2020). Phase separation at the synapse. Nat Neurosci 23, 301–310.

    Article  CAS  PubMed  Google Scholar 

  • Courtney, A.H., Puffer, E.B., Pontrello, J.K., Yang, Z.Q., and Kiessling, L.L. (2009). Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation. Proc Natl Acad Sci USA 106, 2500–2505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuatrecasas, P. (1974). Membrane receptors. Annu Rev Biochem 43, 169–214.

    Article  CAS  PubMed  Google Scholar 

  • George, S.R., O’Dowd, B.F., and Lee, S.P. (2002). G-Protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 1, 808–820.

    Article  CAS  PubMed  Google Scholar 

  • Guo, S., Zhang, X., Zheng, M., Zhang, X., Min, C., Wang, Z., Cheon, S.H., Oak, M.H., Nah, S.Y., and Kim, K.M. (2015). Selectivity of commonly used inhibitors of clathrin-mediated and caveolae-dependent endocytosis of G protein-coupled receptors. Biochim Biophys Acta 1848, 2101–2110.

    Article  CAS  PubMed  Google Scholar 

  • Holland, P.M. (2014). Death receptor agonist therapies for cancer, which is the right TRAIL? Cytokine Growth Factor Rev 25, 185–193.

    Article  CAS  PubMed  Google Scholar 

  • Huet, H.A., Growney, J.D., Johnson, J.A., Li, J., Bilic, S., Ostrom, L., Zafari, M., Kowal, C., Yang, G., Royo, A., et al. (2014). Multivalent nanobodies targeting death receptor 5 elicit superior tumor cell killing through efficient caspase induction. mAbs 6, 1560–1570.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ichikawa, K., Liu, W., Zhao, L., Wang, Z., Liu, D., Ohtsuka, T., Zhang, H., Mountz, J. D., Koopman, W.J., Kimberly, R.P., et al. (2001). Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 7, 954–960.

    Article  CAS  PubMed  Google Scholar 

  • Jähnichen, S., Blanchetot, C., Maussang, D., Gonzalez-Pajuelo, M., Chow, K.Y., Bosch, L., De Vrieze, S., Serruys, B., Ulrichts, H., Vandevelde, W., et al. (2010). CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc Natl Acad Sci USA 107, 20565–20570.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, J.W., and Cochran, J.R. (2017). Targeting ligand-receptor interactions for development of cancer therapeutics. Curr Opin Chem Biol 38, 62–69.

    Article  CAS  PubMed  Google Scholar 

  • Kurochkina, N., and Guha, U. (2013). SH3 domains: modules of protein–protein interactions. Biophys Rev 5, 29–39.

    Article  CAS  PubMed  Google Scholar 

  • Ladbury, J.E., Lin, C.C., and Suen, K.M. (2023). Phase separation enhances probability of receptor signalling and drug targeting. Trends Biochem Sci 48, 428–436.

    Article  CAS  PubMed  Google Scholar 

  • Leader, B., Baca, Q.J., and Golan, D.E. (2008). Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7, 21–39.

    Article  CAS  PubMed  Google Scholar 

  • Li, P., Banjade, S., Cheng, H.C., Kim, S., Chen, B., Guo, L., Llaguno, M., Hollingsworth, J.V., King, D.S., Banani, S.F., et al. (2012). Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, R., Li, T., Lu, G., Cao, Z., Chen, B., Wang, Y., Du, J., and Li, P. (2022). Programming cell-surface signaling by phase-separation-controlled compartmentalization. Nat Chem Biol 18, 1351–1360.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T., Liu, Y., Wang, Y., Hull, M., Schultz, P.G., and Wang, F. (2014). Rational design of CXCR4 specific antibodies with elongated CDRs. J Am Chem Soc 136, 10557–10560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manz, B.N., and Groves, J.T. (2010). Spatial organization and signal transduction at intercellular junctions. Nat Rev Mol Cell Biol 11, 342–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reich, Z., Boniface, J.J., Lyons, D.S., Borochov, N., Wachtel, E.J., and Davis, M.M. (1997). Ligand-specific oligomerization of T-cell receptor molecules. Nature 387, 617–620.

    Article  CAS  PubMed  Google Scholar 

  • Sayers, T.J. (2011). Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol Immunother 60, 1173–1180.

    Article  CAS  PubMed  Google Scholar 

  • Schlessinger, J. (1988). Signal transduction by allosteric receptor oligomerization. Trends Biochem Sci 13, 443–447.

    Article  CAS  PubMed  Google Scholar 

  • Shelby, S.A., Castello-Serrano, I., Wisser, K.C., Levental, I., and Veatch, S.L. (2021). Membrane phase separation drives organization at B cell receptor clusters. bioRxiv, 2021.2005. 2012.443834.

  • Shelby, S.A., Castello-Serrano, I., Wisser, K.C., Levental, I., and Veatch, S.L. (2023). Membrane phase separation drives responsive assembly of receptor signaling domains. Nat Chem Biol 19, 750–758.

    Article  CAS  PubMed  Google Scholar 

  • Shivange, G., Urbanek, K., Przanowski, P., Perry, J.S.A., Jones, J., Haggart, R., Kostka, C., Patki, T., Stelow, E., Petrova, Y., et al. (2018). A single-agent dual-specificity targeting of FOLR1 and DR5 as an effective strategy for ovarian cancer. Cancer Cell 34, 331–345.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, F.D., and Scott, J.D. (2002). Signaling complexes: junctions on the intracellular information super highway. Curr Biol 12, R32–R40.

    Article  CAS  PubMed  Google Scholar 

  • Spencer, D.M., Wandless, T.J., Schreiber, S.L., and Crabtree, G.R. (1993). Controlling signal transduction with synthetic ligands. Science 262, 1019–1024.

    Article  CAS  PubMed  Google Scholar 

  • Su, X., Ditlev, J.A., Hui, E., Xing, W., Banjade, S., Okrut, J., King, D.S., Taunton, J., Rosen, M.K., and Vale, R.D. (2016). Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352, 595–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Karstedt, S., Montinaro, A., and Walczak, H. (2017). Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer 17, 352–366.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B.T., Kothambawala, T., Wang, L., Matthew, T.J., Calhoun, S.E., Saini, A.K., Kotturi, M.F., Hernandez, G., Humke, E.W., Peterson, M.S., et al. (2021). Multimeric anti-DR5 IgM agonist antibody IGM-8444 is a potent inducer of cancer cell apoptosis and synergizes with chemotherapy and BCL-2 inhibitor ABT-199. Mol Cancer Ther 20, 2483–2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., and Chai, J. (2020). Molecular actions of NLR immune receptors in plants and animals. Sci China Life Sci 63, 1303–1316.

    Article  PubMed  Google Scholar 

  • Wang, L.S., and Chen, G.Q. (2011). Current advances in the application of proteomics in apoptosis research. Sci China Life Sci 54, 209–219.

    Article  PubMed  Google Scholar 

  • Wiley, S.R., Schooley, K., Smolak, P.J., Din, W.S., Huang, C.P., Nicholl, J.K., Sutherland, G.R., Smith, T.D., Rauch, C., Smith, C.A., et al. (1995). Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673–682.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Q., McAtee, C.K., and Su, X. (2022). Phase separation in immune signalling. Nat Rev Immunol 22, 188–199.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Ji, X., Li, P., Liu, C., Lou, J., Wang, Z., Wen, W., Xiao, Y., Zhang, M., and Zhu, X. (2020). Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci China Life Sci 63, 953–985.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (32150023). We are grateful to SLSTU-Nikon Biological Imaging Center (Center of Pharmaceutical Technology, Tsinghua University, Beijing, China) for imaging support, and Ting Wang (High Throughput Screening Core Facility, Center of Pharmaceutical Technology, Tsinghua University, Beijing, China) for SPR assays. We also thank the Tsinghua University Branch of China National Center for Protein Sciences (Beijing) and Tsinghua University Technology Center for Protein Research for the Cell Function Analyzing Facility support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weifan Xu or Pilong Li.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Additional information

Data analysis

Images were processed with Nikon NIS-Elements AR 5.20 and Adobe Illustrator CC. The fluorescence intensity was analyzed using ImageJ Fiji and the corresponding graphs were generated by GraphPad Prism 8.

Supplementary Materials for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhu, Y., Xu, W. et al. A phase separation-fortified bi-specific adaptor for conditional tumor killing. Sci. China Life Sci. (2024). https://doi.org/10.1007/s11427-023-2490-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11427-023-2490-2

Navigation