Skip to main content
Log in

A human-specific insertion promotes cell proliferation and migration by enhancing TBC1D8B expression

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Human-specific insertions play important roles in human phenotypes and diseases. Here we reported a 446-bp insertion (Insert-446) in intron 11 of the TBC1D8B gene, located on chromosome X, and traced its origin to a portion of intron 6 of the EBF1 gene on chromosome 5. Interestingly, Insert-446 was present in the human Neanderthal and Denisovans genomes, and was fixed in humans after human-chimpanzee divergence. We have demonstrated that Insert-446 acts as an enhancer through binding transcript factors that promotes a higher expression of human TBC1D8B gene as compared with orthologs in macaques. In addition, over-expression TBC1D8B promoted cell proliferation and migration through “a dual finger” catalytic mechanism (Arg538 and Gln573) in the TBC domain in vitro and knockdown of TBC1D8B attenuated tumorigenesis in vivo. Knockout of Insert-446 prevented cell proliferation and migration in cancer and normal cells. Our results reveal that the human-specific Insert-446 promotes cell proliferation and migration by upregulating the expression of TBC1D8B gene. These findings provide a significant insight into the effects of human-specific insertions on evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The relevant data are included in the paper and accompanying Supporting Information, or are available from the corresponding author upon reasonable request.

References

  • Abba, M.C., Gong, T., Lu, Y., Lee, J., Zhong, Y., Lacunza, E., Butti, M., Takata, Y., Gaddis, S., Shen, J., et al. (2015). A molecular portrait of high-grade ductal carcinoma in situ. Cancer Res 75, 3980–3990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene Ontology: tool for the unification of biology. Nat Genet 25, 25–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baine, M.J., Chakraborty, S., Smith, L.M., Mallya, K., Sasson, A.R., Brand, R.E., and Batra, S.K. (2011). Transcriptional profiling of peripheral blood mononuclear cells in pancreatic cancer patients identifies novel genes with potential diagnostic utility. PLoS ONE 6, e17014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barr, F., and Lambright, D.G. (2010). Rab GEFs and GAPs. Curr Opin Cell Biol 22, 461–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckerman, P., and Susztak, K. (2018). APOL1: the balance imposed by infection, selection, and kidney disease. Trends Mol Med 24, 682–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouha, B., Schustak, J., Badge, R.M., Lutz-Prigge, S., Farley, A.H., Moran, J.V., and Kazazian Haig H., J. (2003). Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 100, 5280–5285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burns, K.H. (2017). Transposable elements in cancer. Nat Rev Cancer 17, 415–424.

    Article  CAS  PubMed  Google Scholar 

  • Chandrashekar, D.S., Bashel, B., Balasubramanya, S.A.H., Creighton, C.J., Ponce-Rodriguez, I., Chakravarthi, B.V.S.K., and Varambally, S. (2017). UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 19, 649–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Benjamin, M.S., Sun, X., Otto, K.B., Guo, P., Dong, X.Y., Bao, Y., Zhou, Z., Cheng, X., Simons, J.W., et al. (2006). KLF5 promotes cell proliferation and tumorigenesis through gene regulationin the TSU-Pr1 human bladder cancer cell line. Int J Cancer 118, 1346–1355.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., Bhalala, H.V., Qiao, H., and Dong, J.T. (2002). A possible tumor suppressor role of the KLF5 transcription factor in human breast cancer. Oncogene 21, 6567–6572.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., Bhalala, H.V., Vessella, R.L., and Dong, J. (2003). KLF5 is frequently deleted and down-regulated but rarely mutated in prostate cancer. Prostate 55, 81–88.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., Zhou, Z., Ross, J.S., Zhou, W., and Dong, J. (2007). The amplified WWP1 gene is a potential molecular target in breast cancer. Intl J Cancer 121, 80–87.

    Article  CAS  Google Scholar 

  • Dean, M. (1998). Cancer as a complex developmental disorder—nineteenth Cornelius P. Rhoads Memorial Award Lecture. Cancer Res 58, 5633–5636.

    CAS  PubMed  Google Scholar 

  • Dong, N., Zhu, Y., Lu, Q., Hu, L., Zheng, Y., and Shao, F. (2012). Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 150, 1029–1041.

    Article  CAS  PubMed  Google Scholar 

  • Dorval, G., Kuzmuk, V., Gribouval, O., Welsh, G.I., Bierzynska, A., Schmitt, A., Miserey-Lenkei, S., Koziell, A., Haq, S., Benmerah, A., et al. (2019). TBC1D8B loss-of-function mutations lead to X-linked nephrotic syndrome via defective trafficking pathways. Am J Hum Genet 104, 348–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ejima, Y., and Yang, L.C. (2003). Trans mobilization of genomic DNA as a mechanism for retrotransposon-mediated exon shuffling. Hum Mol Genet 12, 1321–1328.

    Article  CAS  PubMed  Google Scholar 

  • Ernst, J., Kheradpour, P., Mikkelsen, T.S., Shoresh, N., Ward, L.D., Epstein, C.B., Zhang, X., Wang, L., Issner, R., Coyne, M., et al. (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fairbanks, D.J., Fairbanks, A.D., Ogden, T.H., Parker, G.J., and Maughan, P.J. (2012). NANOGP8: evolution of a human-specific retro-oncogene. G3 2, 1447–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, Z., Zhang, C., Jin, Y., Tong, J., Liu, J., Hao, X., Weng, Q., Yu, S., Du, W., Cai, Y., et al. (2023). Adult-onset focal segmental glomerulosclerosis with steroid-dependent nephrotic syndrome caused by a novel TBC1D8B variant: a case report and literature review. Am J Kidney Dis 81, 240–244.

    Article  CAS  PubMed  Google Scholar 

  • Florentinus-Mefailoski, A., Bowden, P., Scheltens, P., Killestein, J., Teunissen, C., and Marshall, J.G. (2021). The plasma peptides of Alzheimer’s disease. Clin Proteom 18, 17.

    Article  CAS  Google Scholar 

  • Frasa, M.A.M., Koessmeier, K.T., Ahmadian, M.R., and Braga, V.M.M. (2012). Illuminating the functional and structural repertoire of human TBC/RABGAPs. Nat Rev Mol Cell Biol 13, 67–73.

    Article  CAS  PubMed  Google Scholar 

  • Goodier, J.L. (2016). Restricting retrotransposons: a review. Mobile DNA 7, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hancks, D.C., and Kazazian, H.H. (2012). Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22, 191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, L., Yin, L., Wu, Y., Zhao, C., and Du, Y. (2021). Novel TBC1D8B variant in a 6-month-old boy with steroid-sensitive nephrotic syndrome: a case report. Front Pediatr 9, 732512.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kampf, L.L., Schneider, R., Gerstner, L., Thünauer, R., Chen, M., Helmstädter, M., Amar, A., Onuchic-Whitford, A.C., Loza Munarriz, R., Berdeli, A., et al. (2019). TBC1D8B mutations implicate RAB11-dependent vesicular trafficking in the pathogenesis of nephrotic syndrome. J Am Soc Nephrol 30, 2338–2353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazazian, H.H. (2004). Mobile elements: drivers of genome evolution. Science 303, 1626–1632.

    Article  CAS  PubMed  Google Scholar 

  • Kazazian, H.H., and Moran, J.V. (2017). Mobile DNA in health and disease. N Engl J Med 377, 361–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazazian, H.H., Wong, C., Youssoufian, H., Scott, A.F., Phillips, D.G., and Antonarakis, S.E. (1988). Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332, 164–166.

    Article  CAS  PubMed  Google Scholar 

  • Kim, D.S., and Hahn, Y. (2011). Identification of human-specific transcript variants induced by DNA insertions in the human genome. Bioinformatics 27, 14–21.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.K., Kim, S.Y., Kim, J.H., Roh, S.A., Cho, D.H., Kim, Y.S., and Kim, J.C. (2014). A nineteen gene-based risk score classifier predicts prognosis of colorectal cancer patients. Mol Oncol 8, 1653–1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruzel-Davila, E., Wasser, W.G., Aviram, S., and Skorecki, K. (2016). APOL1 nephropathy: from gene to mechanisms of kidney injury. Nephrol Dial Transplant 31, 349–358.

    Article  CAS  PubMed  Google Scholar 

  • Lan, W., Hou, A., Lakshminarayanan, R., Lim, Y., and Tong, L. (2018). Linc-9432 is a novel pterygium lincRNA which regulates differentiation of fibroblasts. FEBS Lett 592, 1173–1184.

    Article  CAS  PubMed  Google Scholar 

  • Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860–921.

    Article  CAS  PubMed  Google Scholar 

  • Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J.H., Zhao, X.M., Yoon, I., Lee, J.Y., Kwon, N.H., Wang, Y.Y., Lee, K.M., Lee, M.J., Kim, J., Moon, H.G., et al. (2016). Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers. Cell Discov 2, 16025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L.L., Zhao, H., Ma, T.F., Ge, F., Chen, C.S., and Zhang, Y.P. (2015). Identification of valid reference genes for the normalization of RT-qPCR expression studies in human breast cancer cell lines treated with and without transient transfection. PLoS ONE 10, e0117058.

    Article  PubMed  PubMed Central  Google Scholar 

  • Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marques, A.C., Dupanloup, I., Vinckenbosch, N., Reymond, A., and Kaessmann, H. (2005). Emergence of young human genes after a burst of retroposition in primates. PLoS Biol 3, 1970–1979.

    Article  CAS  Google Scholar 

  • McDougall, A.R.A., Tolcos, M., Hooper, S.B., Cole, T.J., and Wallace, M.J. (2015). Trop2: From development to disease. Dev Dyn 244, 99–109.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, M., Kircher, M., Gansauge, M.T., Li, H., Racimo, F., Mallick, S., Schraiber, J.G., Jay, F., Prüfer, K., de Filippo, C., et al. (2012). A high-coverage genome sequence from an archaic denisovan individual. Science 338, 222–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milosavljevic, J., Lempicki, C., Lang, K., Heinkele, H., Kampf, L.L., Leroy, C., Chen, M., Gerstner, L., Spitz, D., Wang, M., et al. (2022). Nephrotic syndrome gene TBC1D8B is required for endosomal maturation and nephrin endocytosis in Drosophila. J Am Soc Nephrol 33, 2174–2193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mita, P., and Boeke, J.D. (2016). How retrotransposons shape genome regulation. Curr Opin Genet Dev 37, 90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori, S., Hayashi, M., Inagaki, S., Oshima, T., Tateishi, K., Fujii, H., and Suzuki, S. (2016). Identification of multiple forms of RNA transcripts associated with human-specific retrotransposed gene copies. Genome Biol Evol 8, 2288–2296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, X., Eathiraj, S., Munson, M., and Lambright, D.G. (2006). TBC-domain GAPs for Rab GTPases accelerate GTP hydrolysis by a dual-finger mechanism. Nature 442, 303–306.

    Article  CAS  PubMed  Google Scholar 

  • Pei, L., Peng, Y., Yang, Y., Ling X.B, Eyndhoven, W.G.V., Nguyen, K.C.Q., Rubin, M., Hoey, T., Powers, S., and Li, J. (2002). PRC17, a novel oncogene encoding a Rab GTPase-activating protein, is amplified in prostate cancer. Cancer Res 62, 5420–5424.

    CAS  PubMed  Google Scholar 

  • Pizzollo, J., Nielsen, W.J., Shibata, Y., Safi, A., Crawford, G.E., Wray, G.A., and Babbitt, C.C. (2018). Comparative serum challenges show divergent patterns of gene expression and open chromatin in human and chimpanzee. Genome Biol Evol 10, 826–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P.H., de Filippo, C., et al. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49.

    Article  PubMed  Google Scholar 

  • Puente, X.S., Velasco, G., Gutiérrez-Fernández, A., Bertranpetit, J., King, M.C., and López-Otín, C. (2006). Comparative analysis of cancer genes in the human and chimpanzee genomes. BMC Genomics 7, 15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi, H., Dong, C., Chung, W.K., Wang, K., and Shen, Y. (2016). Deep genetic connection between cancer and developmental disorders. Hum Mutat 37, 1042–1050.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren, S., Peng, Z., Mao, J.H., Yu, Y., Yin, C., Gao, X., Cui, Z., Zhang, J., Yi, K., Xu, W., et al. (2012). RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res 22, 806–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanjana, N.E., Shalem, O., and Zhang, F. (2014). Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11, 783–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scally, A., Dutheil, J.Y., Hillier, L.D.W., Jordan, G.E., Goodhead, I., Herrero, J., Hobolth, A., Lappalainen, T., Mailund, T., Marques-Bonet, T., et al. (2012). Insights into hominid evolution from the gorilla genome sequence. Nature 483, 169–175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott, E.C., Gardner, E.J., Masood, A., Chuang, N.T., Vertino, P.M., and Devine, S.E. (2016). A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res 26, 745–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siva, N. (2008). 1000 Genomes project. Nat Biotechnol 26, 256.

    Article  PubMed  Google Scholar 

  • Snetkova, V., and Skok, J.A. (2018). Enhancer talk. Epigenomics 10, 483–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solyom, S., Ewing, A.D., Hancks, D.C., Takeshima, Y., Awano, H., Matsuo, M., and Kazazian, H.H. (2012). Pathogenic orphan transduction created by a nonreference LINE-1 retrotransposon. Hum Mutat 33, 369–371.

    Article  CAS  PubMed  Google Scholar 

  • Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10, 513–525.

    Article  CAS  PubMed  Google Scholar 

  • Suntsova, M., Gogvadze, E.V., Salozhin, S., Gaifullin, N., Eroshkin, F., Dmitriev, S.E., Martynova, N., Kulikov, K., Malakhova, G., Tukhbatova, G., et al. (2013). Human-specific endogenous retroviral insert serves as an enhancer for the schizophrenia-linked gene PRODH. Proc Natl Acad Sci USA 110, 19472–19477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg, S.L., Rinn, J.L., and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7, 562–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, L., Feng, Z., Wang, X., Wang, X., and Zhang, X. (2010). DEGseq: an Rpackage for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138.

    Article  PubMed  Google Scholar 

  • Xie, H.B., Yan, C., Adeola, A.C., Wang, K., Huang, C.P., Xu, M.M., Qiu, Q., Yin, X., Fan, C.Y., Ma, Y.F., et al. (2022). African suid genomes provide insights into the local adaptation to diverse African environments. Mol Biol Evol 39, msac256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, J., Zheng, Y., Yuan, P., Wang, S., Han, S., Yin, J., Peng, B., Li, Z., Sun, Y., He, X., et al. (2021). Novel host protein TBC1D16, a GTPase activating protein of Rab5C, inhibits prototype foamy virus replication. Front Immunol 12, 658660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Wang, L., Wu, Y., Lu, Z., and Zhang, S. (2020). Genome-wide study of key genes and scoring system as potential noninvasive biomarkers for detection of suicide behavior in major depression disorder. Bioengineered 11, 1189–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by Key Research and Development Program of Yunnan (202203AC100010), the National Natural Science Foundation of China (31760311, 32160236, 81830087, U2102203), the National Key Research and Development Program of China (2022YFC2601604, 2018YFC2000400, 2020YFA0112300), Spring City Plan: the High-level Talent Promotion and Training Project of Kunming (2022SCP001), the Yunnan Fundamental Research Projects (CY22624104, 202101AS070050), the open project of State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences (GREKF17-01), and Yunnan University’s new round of “Double First-Class” Construction Project—For People’s Life and Health (CY22624104). We thank Q. Sun (Chinese Academy of Medical Sciences) and Z. Yang (Guangzhou Medical University) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Zhao, Ce-Shi Chen or Ya-Ping Zhang.

Ethics declarations

The author(s) declare that they have no conflict of interest

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Liu, LL., Sun, J. et al. A human-specific insertion promotes cell proliferation and migration by enhancing TBC1D8B expression. Sci. China Life Sci. 67, 765–777 (2024). https://doi.org/10.1007/s11427-023-2442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-023-2442-3

Keywords

Navigation