Skip to main content
Log in

Causal gene identification and desirable trait recreation in goldfish

  • Cover Article
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Goldfish (Carassius auratus) have long fascinated evolutionary biologists and geneticists because of their diverse morphological and color variations. Recent genome-wide association studies have provided a clue to uncover genomic basis underlying these phenotypic variations, but the causality between phenotypic and genotypic variations have not yet been confirmed. Here, we edited proposed candidate genes to recreate phenotypic traits and developed a rapid biotechnology approach which combines gene editing with high-efficiency breeding, artificial gynogenesis, and temperature-induced sex reversal to establish homozygous mutants within two generations (approximately eight months). We first verified that low-density lipoprotein receptor-related protein 2B (lrp2aB) is the causal gene for the dragon-eye variation and recreated the dragon-eye phenotype in side-view Pleated-skirt Lion-head goldfish. Subsequently, we demonstrated that the albino phenotype was determined by both homeologs of oculocutaneous albinism type II (oca2), which has subfunctionalized to differentially govern melanogenesis in the goldfish body surface and pupils. Overall, we determined two causal genes for dragon-eye and albino phenotypes, and created four stable homozygous strains and more appealing goldfish with desirable traits. The developed biotechnology approach facilitates precise genetic breeding, which will accelerate re-domestication and recreation of phenotypically desirable goldfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data supporting these findings are available in the paper and Supplementary Information.

References

  • Abdelrahman, H., ElHady, M., Alcivar-Warren, A., Allen, S., Al-Tobasei, R., Bao, L., Beck, B., Blackburn, H., Bosworth, B., Buchanan, J., et al. (2017). Aquaculture genomics, genetics and breeding in the united states: current status, challenges, and priorities for future research. BMC Genomics 18, 191.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beirl, A.J., Linbo, T.H., Cobb, M.J., and Cooper, C.D. (2014). oca2 regulation of chromatophore differentiation and number is cell type specific in zebrafish. Pigment Cell Melanoma Res 27, 178–189.

    Article  CAS  PubMed  Google Scholar 

  • Brown, C., Wolfenden, D., and Sneddon, L. (2018). Goldfish (Carassius auratus). In: Yeates, J., ed. Companion Animal Care and Welfare: The UFAW Companion Animal Handbook. Sussex: John Wiley & Sons. 467–478.

    Chapter  Google Scholar 

  • Chen, D., Zhang, Q., Tang, W., Huang, Z., Wang, G., Wang, Y., Shi, J., Xu, H., Lin, L., Li, Z., et al. (2020). The evolutionary origin and domestication history of goldfish (Carassius auratus). Proc Natl Acad Sci USA 117, 29775–29785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S.C. (1928). Transparency and mottling, a case of Mendelian inheritance in the goldfish Carassius auratus. Genetics 13, 434–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S.C. (1954). History of the domestication and the factors of the varietal formation of the common goldfish, Carassius auratus. Sci Sin Vitae 5, 287–321.

    Google Scholar 

  • Chen, W.J., Goldstein, J.L., and Brown, M.S. (1990). NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J Biol Chem 265, 3116–3123.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Chen, Y., Shi, C., Huang, Z., Zhang, Y., Li, S., Li, Y., Ye, J., Yu, C., Li, Z., et al. (2018). SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, gix120.

    Article  PubMed  Google Scholar 

  • Cheng, F., Wu, J., Cai, X., Liang, J., Freeling, M., and Wang, X. (2018). Gene retention, fractionation and subgenome differences in polyploid plants. Nat Plants 4, 258–268.

    Article  CAS  PubMed  Google Scholar 

  • Christ, A., Christa, A., Klippert, J., Eule, J.C., Bachmann, S., Wallace, V. A., Hammes, A., and Willnow, T.E. (2015). LRP2 acts as SHH clearance receptor to protect the retinal margin from mitogenic stimuli. Dev Cell 35, 36–48.

    Article  CAS  PubMed  Google Scholar 

  • Christ, A., Herzog, K., and Willnow, T.E. (2016). LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Dev Dyn 245, 569–579.

    Article  CAS  PubMed  Google Scholar 

  • Christensen, E.I., and Birn, H. (2002). Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3, 258–267.

    Article  Google Scholar 

  • Collery, R.F., and Link, B.A. (2019). Precise short sequence insertion in zebrafish using a CRISPR/Cas9 approach to generate a constitutively soluble Lrp2 protein. Front Cell Dev Biol 7, 167.

    Article  PubMed  PubMed Central  Google Scholar 

  • Darwin, C.R. (1868). Duck goose peacock turkey guinea fowl canary bird goldfish hive bees silk moths. In: Darwin C. R, ed. The Variation of Animals and Plants under Domestication. London: John Murray. 296–313.

    Google Scholar 

  • Fox, D.T., Soltis, D.E., Soltis, P.S., Ashman, T.L., and Van de Peer, Y. (2020). Polyploidy: a biological force from cells to ecosystems. Trends Cell Biol 30, 688–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukamachi, S., Asakawa, S., Wakamatsu, Y., Shimizu, N., Mitani, H., and Shima, A. (2004). Conserved function of medaka pink-eyed dilution in melanin synthesis and its divergent transcriptional regulation in gonads among vertebrates. Genetics 168, 1519–1527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan, R.H., Wang, Y., Li, Z., Yu, Z.X., Li, X.Y., Tong, J.F., Wang, Z.W., Zhang, X.J., Zhou, L., and Gui, J.F. (2021). Functional divergence of multiple duplicated Foxl2 homeologs and alleles in a recurrent polyploid fish. Mol Biol Evol 38, 1995–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratacap, R.L., Wargelius, A., Edvardsen, R.B., and Houston, R.D. (2019). Potential of genome editing to improve aquaculture breeding and production. Trends Genet 35, 672–684.

    Article  CAS  PubMed  Google Scholar 

  • Gui, J.F., Zhou, L., and Li, X.Y. (2022). Rethinking fish biology and biotechnologies in the challenge era for burgeoning genome resources and strengthening food security. Water Biol Security 1, 100002.

    Article  Google Scholar 

  • Hanak, T., Madsen, C.K., and Brinch-Pedersen, H. (2022). Genome Editing-accelerated Re-Domestication (GEaReD)—a new major direction in plant breeding. Biotechnol J 17, 2100545.

    Article  CAS  Google Scholar 

  • Houston, R.D., Bean, T.P., Macqueen, D.J., Gundappa, M.K., Jin, Y.H., Jenkins, T.L., Selly, S.L.C., Martin, S.A.M., Stevens, J.R., Santos, E.M., et al. (2020). Harnessing genomics to fast-track genetic improvement in aquaculture. Nat Rev Genet 21, 389–409.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, D.K., Stubbs, L.J., Culiat, C.T., Montgomery, C.S., Russell, L.B., and Rinchik, E.M. (1995). Molecular analysis of 36 mutations at the mouse pink-eyed dilution (p) locus. Genetics 141, 1563–1571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantarci, S., Al-Gazali, L., Hill, R.S., Donnai, D., Black, G.C.M., Bieth, E., Chassaing, N., Lacombe, D., Devriendt, K., Teebi, A., et al. (2007). Mutations in LRP2, which encodes the multiligand receptor megalin, cause donnai-barrow and facio-oculo-acoustico-renal syndromes. Nat Genet 39, 957–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kon, T., Omori, Y., Fukuta, K., Wada, H., Watanabe, M., Chen, Z., Iwasaki, M., Mishina, T., Matsuzaki, S.I.S., Yoshihara, D., et al. (2020). The genetic basis of morphological diversity in domesticated goldfish. Curr Biol 30, 2260–2274.e6.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25, 1754–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and samtools. Bioinformatics 25, 2078–2079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X.Y., and Gui, J.F. (2018). Diverse and variable sex determination mechanisms in vertebrates. Sci China Life Sci 61, 1503–1514.

    Article  PubMed  Google Scholar 

  • Li, X.Y., Liu, X.L., Zhu, Y.J., Zhang, J., Ding, M., Wang, M.T., Wang, Z. W., Li, Z., Zhang, X.J., Zhou, L., et al. (2018). Origin and transition of sex determination mechanisms in a gynogenetic hexaploid fish. Heredity 121, 64–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X.Y., Mei, J., Ge, C.T., Liu, X.L., and Gui, J.F. (2022). Sex determination mechanisms and sex control approaches in aquaculture animals. Sci China Life Sci 65, 1091–1122.

    Article  PubMed  Google Scholar 

  • Li, Z., Lu, M., Wang, Z.W., Li, X.Y., Wang, Y., Zhang, X.J., and Gui, J.F. (2020). An effective method for creating allo-octoploids by integrating exogenous sperm genome into gibel carp eggs (in Chinese). Acta Hydrobiol Sin 44, 26–35.

    CAS  Google Scholar 

  • Lin, Q., and Mei, J. (2022). Genomic characterization of an amphitriploid fish and insights into the evolutionary mechanisms of unisexual reproduction success. Water Biol Security 1, 100066.

    Article  Google Scholar 

  • Lister, J.A. (2002). Development of pigment cells in the zebrafish embryo. Microsc Res Tech 58, 435–441.

    Article  CAS  PubMed  Google Scholar 

  • Lu, M., Li, X.Y., Li, Z., Du, W.X., Zhou, L., Wang, Y., Zhang, X.J., Wang, Z.W., and Gui, J.F. (2021). Regain of sex determination system and sexual reproduction ability in a synthetic octoploid male fish. Sci China Life Sci 64, 77–87.

    Article  CAS  PubMed  Google Scholar 

  • Luo, J., Chai, J., Wen, Y., Tao, M., Lin, G., Liu, X., Ren, L., Chen, Z., Wu, S., Li, S., et al. (2020). From asymmetrical to balanced genomic diversification during rediploidization: subgenomic evolution in allotetraploid fish. Sci Adv 6, eaaz7677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miron, D.S., Silva, L.V.F., Golombieski, J.I., and Baldisserotto, B. (2003). Efficacy of different salt (NaCl) concentrations in the treatment of Ichthyophthirius multifiliis-Infected silver catfish, Rhamdia quelen, fingerlings. J Appl Aquacul 14, 155–161.

    Article  Google Scholar 

  • Mou, C. Y., Wang, Y., Yu, P., Li, Z., Wang, Z. W., Li, X. Y., Li, S., Lu, L. F., Tong, J.F., Zhang, Q.Y., et al. (2022). Cooperative antivirus activities of two duplicated viperin homeologs confirmed by CRISPR/Cas9 editing in hexaploid gibel carp. Aquaculture 548, 737609.

    Article  CAS  Google Scholar 

  • Nie, C.H., Wan, S.M., Chen, Y.L., Huysseune, A., Wu, Y.M., Zhou, J.J., Hilsdorf, A.W.S., Wang, W., Witten, P.E., Lin, Q., et al. (2022). Single-cell transcriptomes and runx2b−/− mutants reveal the genetic signatures of intermuscular bone formation in zebrafish. Natl Sci Rev, doi: https://doi.org/10.1093/nsr/nwac152.

  • Okoli, A.S., Blix, T., Myhr, A.I., Xu, W., and Xu, X. (2022). Sustainable use of CRISPR/Cas in fish aquaculture: the biosafety perspective. Transgenic Res 31, 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Omori, Y., and Kon, T. (2019). Goldfish: an old and new model system to study vertebrate development, evolution and human disease. J Biochem 165, 209–218.

    Article  CAS  PubMed  Google Scholar 

  • Ota, K.G., and Abe, G. (2016). Goldfish morphology as a model for evolutionary developmental biology. WIREs Dev Biol 5, 272–295.

    Article  Google Scholar 

  • Protas, M.E., Hersey, C., Kochanek, D., Zhou, Y., Wilkens, H., Jeffery, W. R., Zon, L.I., Borowsky, R., and Tabin, C.J. (2006). Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet 38, 107–111.

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishnan, A., Rohatgi, R., and Siebold, C. (2020). Cholesterol access in cellular membranes controls hedgehog signaling. Nat Chem Biol 16, 1303–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramachandra Rao, S., and Fliesler, S.J. (2021). Cholesterol homeostasis in the vertebrate retina: biology and pathobiology. J Lipid Res 62, 100057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito, A., Pietromonaco, S., Loo, A.K.C., and Farquhar, M.G. (1994). Complete cloning and sequencing of rat gp330/“megalin,” a distinctive member of the low density lipoprotein receptor gene family. Proc Natl Acad Sci USA 91, 9725–9729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltis, P.S., and Soltis, D.E. (2016). Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol 30, 159–165.

    Article  PubMed  Google Scholar 

  • Storm, T., Heegaard, S., Christensen, E.I., and Nielsen, R. (2014). Megalin-deficiency causes high myopia, retinal pigment epithelium-macromelanosomes and abnormal development of the ciliary body in mice. Cell Tissue Res 358, 99–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, Y., and Zhu, Z. (2019). Designing future farmed fishes using genome editing. Sci China Life Sci 62, 420–422.

    Article  PubMed  Google Scholar 

  • Suzuki, T., and Tomita, Y. (2008). Recent advances in genetic analyses of oculocutaneous albinism types 2 and 4. J Dermatol Sci 51, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Tong, J.F., Zhou, L., Li, S., Lu, L.F., Li, Z.C., Li, Z., Gan, R.H., Mou, C.Y., Zhang, Q.Y., Wang, Z.W., et al. (2021). Two duplicated ptpn6 homeologs cooperatively and negatively regulate RLR-mediated IFN response in hexaploid gibel carp. Front Immunol 12, 780667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van de Peer, Y., Mizrachi, E., and Marchal, K. (2017). The evolutionary significance of polyploidy. Nat Rev Genet 18, 411–424.

    Article  CAS  PubMed  Google Scholar 

  • Veth, K.N., Willer, J.R., Collery, R.F., Gray, M.P., Willer, G.B., Wagner, D. S., Mullins, M.C., Udvadia, A.J., Smith, R.S., John, S.W.M., et al. (2011). Mutations in zebrafish lrp2 result in adult-onset ocular pathogenesis that models myopia and other risk factors for glaucoma. PLoS Genet 7, e1001310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, T., Li, Z., Yu, Z.X., Wang, Z.W., Lian, Z.Q., Du, W.X., Zhao, X., Wang, M.T., Miao, C., Ding, M., et al. (2021). Production of YY males through self-fertilization of an occasional hermaphrodite in Lanzhou catfish (Silurus lanzhouensis). Aquaculture 539, 736622.

    Article  Google Scholar 

  • Wang, M.T., Li, Z., Ding, M., Yao, T.Z., Yang, S., Zhang, X.J., Miao, C., Du, W.X., Shi, Q., Li, S., et al. (2022a). Two duplicated gsdf homeologs cooperatively regulate male differentiation by inhibiting cyp19a1a transcription in a hexaploid fish. PLoS Genet 18, e1010288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Li, X.Y., Xu, W.J., Wang, K., Wu, B., Xu, M., Chen, Y., Miao, L. J., Wang, Z.W., Li, Z., et al. (2022b). Comparative genome anatomy reveals evolutionary insights into a unique amphitriploid fish. Nat Ecol Evol 6, 1354–1366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ye, Q.C., and Qu, L.M. (2017). Goldfish of China Descriptions and Illustrations of Diverse Goldfish in China. Fuzhou: The Straits Publishing & Distributing Group.

    Google Scholar 

  • Yu, P., Wang, Y., Yang, W.T., Li, Z., Zhang, X.J., Zhou, L., and Gui, J.F. (2021). Upregulation of the PPAR signaling pathway and accumulation of lipids are related to the morphological and structural transformation of the dragon-eye goldfish eye. Sci China Life Sci 64, 1031–1049.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, X., Li, Z., Ding, M., Wang, T., Wang, M.T., Miao, C., Du, W.X., Zhang, X.J., Wang, Y., Wang, Z.W., et al. (2021). Genotypic males play an important role in the creation of genetic diversity in gynogenetic gibel carp. Front Genet 12, 691923.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, L., and Gui, J. (2017). Natural and artificial polyploids in aquaculture. Aquacul Fisheries 2, 103–111.

    Article  Google Scholar 

  • Zhou, L., Wang, Z.W., Wang, Y., and Gui, J.F. (2018). Crucian carp and gibel carp culture. In: Gui, J.F., Tang, Q.S., Li, Z.J., Liu, J.S., and De Silva, S.S., ed. Aquaculture in China: Success Stories and Modern Trends. Oxford: John Wiley & Sons. 149–157.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFD0901202), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31000000), the Knowledge Innovation Program of Wuhan -Basic Research (2022020801010143), the Autonomous Project of the State Key Laboratory of Freshwater Ecology and Biotechnology (2021FB02), and the China Agriculture Research System of MOF and MARA. The research was supported by the Wuhan Branch, Supercomputing Center, Chinese Academy of Sciences, China. We thank Fang Zhou for providing confocal services (Analytical & Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences). We thank Mallory Eckstut, PhD for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Zhou or Jian-Fang Gui.

Additional information

Compliance and ethics

The author(s) declare that they have no competing interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, P., Wang, Y., Li, Z. et al. Causal gene identification and desirable trait recreation in goldfish. Sci. China Life Sci. 65, 2341–2353 (2022). https://doi.org/10.1007/s11427-022-2194-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2194-7

Keywords

Navigation