Skip to main content
Log in

Genome-wide signatures of the geographic expansion and breeding of soybean

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Soybean is a leguminous crop that provides oil and protein. Exploring the genomic signatures of soybean evolution is crucial for breeding varieties with improved adaptability to environmental extremes. We analyzed the genome sequences of 2,214 soybeans and proposed a soybean evolutionary route, i.e., the expansion of annual wild soybean (Glycine soja Sieb. & Zucc.) from southern China and its domestication in central China, followed by the expansion and local breeding selection of its landraces (G. max (L.) Merr.). We observed that the genetic introgression in soybean landraces was mostly derived from sympatric rather than allopatric wild populations during the geographic expansion. Soybean expansion and breeding were accompanied by the positive selection of flowering time genes, including GmSPA3c. Our study sheds light on the evolutionary history of soybean and provides valuable genetic resources for its future breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akey, J.M. (2009). Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res 19, 711–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander, D.H., Novembre, J., and Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19, 1655–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, Y., Chen, L., Zhang, Y., Yuan, S., Su, Q., Sun, S., Wu, C., Yao, W., Han, T., and Hou, W. (2020a). Target base editing in soybean using a modified CRISPR/Cas9 system. Plant Biotechnol J 18, 1996–1998.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai, Y., Wang, L., Chen, L., Wu, T., Liu, L., Sun, S., Wu, C., Yao, W., Jiang, B., Yuan, S., et al. (2020b). Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol J 18, 298–309.

    Article  CAS  PubMed  Google Scholar 

  • Cao, D., Takeshima, R., Zhao, C., Liu, B., Jun, A., and Kong, F. (2017). Molecular mechanisms of flowering under long days and stem growth habit in soybean. J Exp Bot 68, 1873–1884.

    CAS  PubMed  Google Scholar 

  • Carter, T.E., Nelson, R., Sneller, C.H., and Cui, Z. (2004). Soybeans: improvement, Production and Uses 3rd edn (Wisconsin, Madison).

    Google Scholar 

  • Challinor, A.J., Koehler, A.K., Ramirez-Villegas, J., Whitfield, S., and Das, B. (2016). Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat Clim Change 6, 954–958.

    Article  Google Scholar 

  • Chen, H., Huang, X., Gusmaroli, G., Terzaghi, W., Lau, O.S., Yanagawa, Y., Zhang, Y., Li, J., Lee, J.H., Zhu, D., et al. (2010a). Arabidopsis CULLIN4-damaged DNA binding protein 1 interacts with CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF PHYA complexes to regulate photomorphogenesis and flowering time. Plant Cell 22, 108–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, H., Patterson, N., and Reich, D. (2010b). Population differentiation as a test for selective sweeps. Genome Res 20, 393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Cai, Y., Qu, M., Wang, L., Sun, H., Jiang, B., Wu, T., Liu, L., Sun, S., Wu, C., Yao, W., Yuan, S., Han, T., and Hou, W. (2020a). Soybean adaption to high-latitude regions is associated with natural variations of GmFT2b, an ortholog of FLOWERING LOCUS T. Plant Cell Environ 43, 934–944.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Nan, H., Kong, L., Yue, L., Yang, H., Zhao, Q., Fang, C., Li, H., Cheng, Q., Lu, S., Kong, F., Liu, B., and Dong, L. (2020b). Soybean AP1 homologs control flowering time and plant height. J Integr Plant Biol, doi: https://doi.org/10.1111/jipb.12988.

  • Cober, E.R., and Voldeng, H.D. (2001). Low R:FR light quality delays flowering of E7E7 soybean lines. Crop Sci 41, 1823–1826.

    Article  Google Scholar 

  • Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M. A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al. (2011). The variant call format and VCFtools. Bioinformatics 27, 2156–2158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, L., Fang, C., Cheng, Q., Su, T., Kou, K., Kong, L., Zhang, C., Li, H., Hou, Z., Zhang, Y., et al. (2021). Genetic basis and adaptation trajectory of soybean from its temperate origin to tropics. Nat Commun 12, 5445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elzinga, J.A., Atlan, A., Biere, A., Gigord, L., Weis, A.E., and Bernasconi, G. (2007). Time after time: flowering phenology and biotic interactions. Trends Ecol Evol 22, 432–439.

    Article  PubMed  Google Scholar 

  • Fang, X., Han, Y., Liu, M., Jiang, J., Li, X., Lian, Q., Xie, X., Huang, Y., Ma, Q., Nian, H., et al. (2021). Modulation of evening complex activity enables north-to-south adaptation of soybean. Sci China Life Sci 64, 179–195.

    Article  CAS  PubMed  Google Scholar 

  • Gai, J., and Cui, Z. (1994). Ancestral analysis of soybean cultivars released in China. J Nanjing Agri Uni 17, 19–23.

    Google Scholar 

  • Gaut, B.S., Seymour, D.K., Liu, Q., and Zhou, Y. (2018). Demography and its effects on genomic variation in crop domestication. Nat Plants 4, 512–520.

    Article  PubMed  Google Scholar 

  • Gaut, B.S., Morton, B.R., McCaig, B.C., and Clegg, M.T. (1996). Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93, 10274–10279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, J., Liu, Y., Wang, Y., Chen, J., Li, Y., Huang, H., Qiu, L., and Wang, Y. (2012). Population structure of the wild soybean (Glycine soja) in China: implications from microsatellite analyses. Ann Bot 110, 777–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, F., and Ling, Y.L. (1992). Study development of perennial Glycine on collecting, appraising and using. Soybean Sci 11, 64–69.

    Google Scholar 

  • Huang, X., Kurata, N., Wei, X., Wang, Z.X., Wang, A., Zhao, Q., Zhao, Y., Liu, K., Lu, H., Li, W., et al. (2012). A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hufford, M.B., Lubinksy, P., Pyhäjärvi, T., Devengenzo, M.T., Ellstrand, N. C., and Ross-Ibarra, J. (2013). The genomic signature of crop-wild introgression in maize. PLoS Genet 9, e1003477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hufford, M.B., Xu, X., van Heerwaarden, J., Pyhäjärvi, T., Chia, J.M., Cartwright, R.A., Elshire, R.J., Glaubitz, J.C., Guill, K.E., Kaeppler, S. M., et al. (2012). Comparative population genomics of maize domestication and improvement. Nat Genet 44, 808–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hymowitz, T., and Newell, C.A. (1981). Taxonomy of the genusGlycine, domestication and uses of soybeans. Econ Bot 35, 272–288.

    Article  Google Scholar 

  • Kereszt, A., Li, D., Indrasumunar, A., Nguyen, C.D.T., Nontachaiyapoom, S., Kinkema, M., and Gresshoff, P.M. (2007). Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2, 948–952.

    Article  CAS  PubMed  Google Scholar 

  • Lam, H.M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F.L., Li, M.W., He, W., Qin, N., Wang, B., et al. (2010). Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42, 1053–1059.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Li, Y.H., Li, Y., Lu, H., Hong, H., Tian, Y., Li, H., Zhao, T., Zhou, X., Liu, J., et al. (2020a). A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Mol Plant 13, 745–759.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Li, Y.H., Li, Y., Lu, H., Hong, H., Tian, Y., Li, H., Zhao, T., Zhou, X., Liu, J., Zhou, X., Jackson, S.A., Liu, B., and Qiu, L.J. (2020b). A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Mol Plant 13, 745–759.

    Article  CAS  PubMed  Google Scholar 

  • Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Hong, H., Li, Y., Ma, Y., Chang, R., and Qiu, L. (2016). The identification of presence/absence variants associated with the apparent differences of growth period structures between cultivated and wild soybeans. J Integrat Agr 15, 262–270.

    Article  Google Scholar 

  • Li, Y., Zhao, S., Ma, J., Li, D., Yan, L., Li, J., Qi, X., Guo, X., Zhang, L., He, W., et al. (2013). Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics 14, 579.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, B., Kanazawa, A., Matsumura, H., Takahashi, R., Harada, K., and Abe, J. (2008). Genetic redundancy in soybean photoresponses associated with duplication of the Phytochrome A gene. Genetics 180, 995–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Jiang, B., Ma, L., Zhang, S., Zhai, H., Xu, X., Hou, W., Xia, Z., Wu, C., Sun, S., et al. (2018). Functional diversification of Flowering Locus T homologs in soybean: GmFT1a and GmFT2a/5a have opposite roles in controlling flowering and maturation. New Phytol 217, 1335–1345.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Huang, M., Fan, B., Buckler, E.S., and Zhang, Z. (2016). Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12, e1005767.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.A., Zhang, H., Liu, Z., Shi, M., et al. (2020). Pan-genome of wild and cultivated soybeans. Cell 182, 162–176.e13.

    Article  CAS  PubMed  Google Scholar 

  • Lu, S., Dong, L., Fang, C., Liu, S., Kong, L., Cheng, Q., Chen, L., Su, T., Nan, H., Zhang, D., et al. (2020). Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 52, 428–436.

    Article  CAS  PubMed  Google Scholar 

  • Lu, S., Zhao, X., Hu, Y., Liu, S., Nan, H., Li, X., Fang, C., Cao, D., Shi, X., Kong, L., et al. (2017). Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet 49, 773–779.

    Article  CAS  PubMed  Google Scholar 

  • Martin, S.H., Davey, J.W., and Jiggins, C.D. (2014). Evaluating the use of ABBA-BABA statistics to locate introgressed loci. Mol Biol Evol 2014, 32.

    Google Scholar 

  • McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20, 1297–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molnar, S.J., Rai, S., Charette, M., and Cober, E.R. (2003). Simple sequence repeat (SSR) markers linked to E1, E3, E4, and E7 maturity genes in soybean. Genome 46, 1024–1036.

    Article  CAS  PubMed  Google Scholar 

  • Naito, Y., Hino, K., Bono, H., and Ui-Tei, K. (2015). CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31, 1120–1123.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M., and Li, W.H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76, 5269–5273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen, R., Paul, J.S., Albrechtsen, A., and Song, Y.S. (2011). Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12, 443–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paz, M.M., Martinez, J.C., Kalvig, A.B., Fonger, T.M., and Wang, K. (2006). Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25, 206–213.

    Article  CAS  PubMed  Google Scholar 

  • Pickrell, J.K., and Pritchard, J.K. (2012). Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet 8, e1002967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., de Bakker, P.I.W., Daly, M.J., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81, 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, L.J., Chang, R.Z., Liu, Z.X., Guan, R.X., and Li, Y.H. (2006). Descriptors and data standard for soybean (Glycine spp.) (Beijing, China Agriculture Press).

    Google Scholar 

  • Sabeti, P.C., Schaffner, S.F., Fry, B., Lohmueller, J., Varilly, P., Shamovsky, O., Palma, A., Mikkelsen, T.S., Altshuler, D., and Lander, E.S. (2006). Positive natural selection in the human lineage. Science 312, 1614–1620.

    Article  CAS  PubMed  Google Scholar 

  • Sabeti, P.C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., Xie, X., Byrne, E.H., McCarroll, S.A., Gaudet, R., et al. (2007). Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., et al. (2010). Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183.

    Article  CAS  PubMed  Google Scholar 

  • Sun, L., Miao, Z., Cai, C., Zhang, D., Zhao, M., Wu, Y., Zhang, X., Swarm, S.A., Zhou, L., Zhang, Z.J., et al. (2015a). GmHs1–1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat Genet 47, 939–943.

    Article  CAS  PubMed  Google Scholar 

  • Sun, X., Hu, Z., Chen, R., Jiang, Q., Song, G., Zhang, H., and Xi, Y. (2015b). Targeted mutagenesis in soybean using the CRISPR-Cas9 system. Sci Rep 5, 10342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarasov, A., Vilella, A.J., Cuppen, E., Nijman, I.J., and Prins, P. (2015). Sambamba: fast processing of NGS alignment formats. Bioinformatics 31, 2032–2034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terhorst, J., Kamm, J.A., and Song, Y.S. (2017). Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat Genet 49, 303–309.

    Article  CAS  PubMed  Google Scholar 

  • Tian, S., Zhou, X., Phuntsok, T., Zhao, N., Zhang, D., Ning, C., Li, D., and Zhao, H. (2020). Genomic analyses reveal genetic adaptations to tropical climates in chickens. iScience 23, 101644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, M., Li, W., Fang, C., Xu, F., Liu, Y., Wang, Z., Yang, R., Zhang, M., Liu, S., Lu, S., et al. (2018a). Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet 50, 1435–1441.

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Zhao, Y., and Zhang, B. (2015). Efficient test and visualization of multi-set intersections. Sci Rep 5, 16923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M.S., Zhang, R.W., Su, L.Y., Li, Y., Peng, M.S., Liu, H.Q., Zeng, L., Irwin, D.M., Du, J.L., Yao, Y.G., et al. (2016). Positive selection rather than relaxation of functional constraint drives the evolution of vision during chicken domestication. Cell Res 26, 556–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., et al. (2018b). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, S., Hideshima, R., Xia, Z., Tsubokura, Y., Sato, S., Nakamoto, Y., Yamanaka, N., Takahashi, R., Ishimoto, M., Anai, T., et al. (2009). Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182, 1251–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, S., Xia, Z., Hideshima, R., Tsubokura, Y., Sato, S., Yamanaka, N., Takahashi, R., Anai, T., Tabata, S., Kitamura, K., et al. (2011). A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188, 395–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir, B.S., and Cockerham, C.C. (1984a). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.

    CAS  PubMed  Google Scholar 

  • Weir, B.S., and Cockerham, C.C. (1984b). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.

    CAS  PubMed  Google Scholar 

  • Weller, J.L., and Ortega, R.Ã. (2015). Genetic control of flowering time in legumes. Front Plant Sci 6, 207.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia, Z., Watanabe, S., Yamada, T., Tsubokura, Y., Nakashima, H., Zhai, H., Anai, T., Sato, S., Yamazaki, T., and Lü, S. (2012). Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci USA 109, E2155–E2164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Lee, S.H., Goddard, M.E., and Visscher, P.M. (2011). GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88, 76–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi, X., Liang, Y., Huerta-Sanchez, E., Jin, X., Cuo, Z.X.P., Pool, J.E., Xu, X., Jiang, H., Vinckenbosch, N., Korneliussen, T.S., et al. (2010). Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329, 75–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, D., Sun, L., Li, S., Wang, W., Ding, Y., Swarm, S.A., Li, L., Wang, X., Tang, X., Zhang, Z., et al. (2018). Elevation of soybean seed oil content through selection for seed coat shininess. Nat Plants 4, 30–35.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H., Liang, Q., Wang, N., Wang, Q., Leng, L., Mao, J., Wang, Y., Wang, S., Zhang, J., Liang, H., et al. (2020). Microevolutionary dynamics of chicken genomes under divergent selection for adiposity. iScience 23, 101193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z., Jiang, Y., Wang, Z., Gou, Z., Lyu, J., Li, W., Yu, Y., Shu, L., Zhao, Y., Ma, Y., et al. (2015). Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33, 408–414.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B., Sun, S., Han, T., and Wu, C. (2012). Comparison of growth period and its structure traits between wild and cultivated soybeans in China. Soybean Sci 31, 894–898.

    Google Scholar 

  • Zou, J.J., Singh, R.J., Lee, J., Xu, S.J., Cregan, P.B., and Hymowitz, T. (2003). Assignment of molecular linkage groups to soybean chromosomes by primary trisomics. Theor Appl Genet 107, 745–750.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFD1201601, 2016YFD0100201, 2020YFE0202300), the National Natural Science Foundation of China (32072091), the Platform of National Crop Germplasm Resources of China (2016-004, 2017-004, 2018-004, 2019-04, 2020-05), the Crop Germplasm Resources Protection (2016NWB036-05, 2017NWB036-05, 2018NWB036-05, 2019NWB036-05), the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences (CAAS-ZDRW202109). We thank the Core Facility Platform, Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), for assistance with sequencing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott A. Jackson, Bin Liu, Shilin Tian or Li-juan Qiu.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YH., Qin, C., Wang, L. et al. Genome-wide signatures of the geographic expansion and breeding of soybean. Sci. China Life Sci. 66, 350–365 (2023). https://doi.org/10.1007/s11427-022-2158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2158-7

Keywords

Navigation