Skip to main content
Log in

Mechanisms of chromatin-based epigenetic inheritance

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Multi-cellular organisms such as humans contain hundreds of cell types that share the same genetic information (DNA sequences), and yet have different cellular traits and functions. While how genetic information is passed through generations has been extensively characterized, it remains largely obscure how epigenetic information encoded by chromatin regulates the passage of certain traits, gene expression states and cell identity during mitotic cell divisions, and even through meiosis. In this review, we will summarize the recent advances on molecular mechanisms of epigenetic inheritance, discuss the potential impacts of epigenetic inheritance during normal development and in some disease conditions, and outline future research directions for this challenging, but exciting field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adkins, M.W., Howar, S.R., and Tyler, J.K. (2004). Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol Cell 14, 657–666.

    Article  PubMed  CAS  Google Scholar 

  • Adkins, M.W., and Tyler, J.K. (2004). The histone chaperone Asf1p mediates global chromatin disassembly in vivo. J Biol Chem 279, 52069–52074.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, K., and Henikoff, S. (2002a). Histone H3 variants specify modes of chromatin assembly. Proc Natl Acad Sci USA 99, 16477–16484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmad, K., and Henikoff, S. (2002b). The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9, 1191–1200.

    Article  PubMed  CAS  Google Scholar 

  • Alabert, C., Barth, T.K., Reverón-Gómez, N., Sidoli, S., Schmidt, A., Jensen, O.N., Imhof, A., and Groth, A. (2015). Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev 29, 585–590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allis, C.D., and Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nat Rev Genet 17, 487–500.

    Article  PubMed  CAS  Google Scholar 

  • Allis, C.D., Jenuwein, T., and Reinberg, D. (2007). Epigenetics (Cold Spring Harbor: Cold Spring Harbor Laboratory).

    Google Scholar 

  • An, S., Yoon, J., Kim, H., Song, J.J., and Cho, U.S. (2017). Structure-based nuclear import mechanism of histones H3 and H4 mediated by Kap123. eLife 6, e30244.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arand, J., Spieler, D., Karius, T., Branco, M.R., Meilinger, D., Meissner, A., Jenuwein, T., Xu, G., Leonhardt, H., Wolf, V., et al. (2012). In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet 8, e1002750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arita, K., Isogai, S., Oda, T., Unoki, M., Sugita, K., Sekiyama, N., Kuwata, K., Hamamoto, R., Tochio, H., Sato, M., et al. (2012). Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1. Proc Natl Acad Sci USA 109, 12950–12955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Audergon, P.N.C.B., Catania, S., Kagansky, A., Tong, P., Shukla, M., Pidoux, A.L., and Allshire, R.C. (2015). Restricted epigenetic inheritance of H3K9 methylation. Science 348, 132–135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Augui, S., Nora, E.P., and Heard, E. (2011). Regulation of X-chromosome inactivation by the X-inactivation centre. Nat Rev Genet 12, 429–442.

    Article  PubMed  CAS  Google Scholar 

  • Avner, P., and Heard, E. (2001). X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet 2, 59–67.

    Article  PubMed  CAS  Google Scholar 

  • Avvakumov, G.V., Walker, J.R., Xue, S., Li, Y., Duan, S., Bronner, C., Arrowsmith, C.H., and Dhe-Paganon, S. (2008). Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 455, 822–825.

    Article  PubMed  CAS  Google Scholar 

  • Aygün, O., Mehta, S., and Grewal, S.I.S. (2013). HDAC-mediated suppression of histone turnover promotes epigenetic stability of heterochromatin. Nat Struct Mol Biol 20, 547–554.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bae, H.J., Dubarry, M., Jeon, J., Soares, L.M., Dargemont, C., Kim, J., Geli, V., and Buratowski, S. (2020). The Set1 N-terminal domain and Swd2 interact with RNA polymerase II CTD to recruit COMPASS. Nat Commun 11, 2181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ballaré, C., Lange, M., Lapinaite, A., Martin, G.M., Morey, L., Pascual, G., Liefke, R., Simon, B., Shi, Y., Gozani, O., et al. (2012). Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. Nat Struct Mol Biol 19, 1257–1265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bao, K., Shan, C.M., Moresco, J., Yates Iii, J., and Jia, S. (2019). Anti-silencing factor Epe1 associates with SAGA to regulate transcription within heterochromatin. Genes Dev 33, 116–126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baubec, T., Colombo, D.F., Wirbelauer, C., Schmidt, J., Burger, L., Krebs, A.R., Akalin, A., and Schübeler, D. (2015). Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247.

    Article  PubMed  CAS  Google Scholar 

  • Bayne, E.H., White, S.A., Kagansky, A., Bijos, D.A., Sanchez-Pulido, L., Hoe, K.L., Kim, D.U., Park, H.O., Ponting, C.P., Rappsilber, J., et al. (2010). Stc1: a critical link between RNAi and chromatin modification required for heterochromatin integrity. Cell 140, 666–677.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bell, S.P., and Dutta, A. (2002). DNA replication in eukaryotic cells. Annu Rev Biochem 71, 333–374.

    Article  PubMed  CAS  Google Scholar 

  • Bell, S.P., and Stillman, B. (1992). ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128–134.

    Article  PubMed  CAS  Google Scholar 

  • Bellelli, R., Belan, O., Pye, V.E., Clement, C., Maslen, S.L., Skehel, J.M., Cherepanov, P., Almouzni, G., and Boulton, S.J. (2018). POLE3-pole4 is a histone H3–H4 chaperone that maintains chromatin integrity during DNA replication. Mol Cell 72, 112–126.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belotserkovskaya, R., and Reinberg, D. (2004). Facts about FACT and transcript elongation through chromatin. Curr Opin Genet Dev 14, 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Benayoun, B.A., Pollina, E.A., and Brunet, A. (2015). Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16, 593–610.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bergink, E.W., Kloosterboer, H.J., Gruber, M., and Ab, G. (1973). Estrogen-induced phosphoprotein synthesis in roosters. Biochim Biophys Acta (BBA)-Nucl Acids Protein Syn 294, 497–506.

    Article  CAS  Google Scholar 

  • Bestor, T., Laudano, A., Mattaliano, R., and Ingram, V. (1988). Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. J Mol Biol 203, 971–983.

    Article  PubMed  CAS  Google Scholar 

  • Bestor, T.H., and Ingram, V.M. (1983). Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc Natl Acad Sci USA 80, 5559–5563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bird, A., Taggart, M., Frommer, M., Miller, O.J., and Macleod, D. (1985). A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40, 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Bostick, M., Kim, J.K., Esteve, P.O., Clark, A., Pradhan, S., and Jacobsen, S.E. (2007). UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317, 1760–1764.

    Article  PubMed  CAS  Google Scholar 

  • Boulay, G., Rosnoblet, C., Guérardel, C., Angrand, P.O., and Leprince, D. (2011). Functional characterization of human Polycomb-like 3 isoforms identifies them as components of distinct EZH2 protein complexes. Biochem J 434, 333–342.

    Article  PubMed  CAS  Google Scholar 

  • Bourc’his, D., Xu, G.L., Lin, C.S., Bollman, B., and Bestor, T.H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536–2539.

    Article  PubMed  Google Scholar 

  • Brandeis, M., Frank, D., Keshet, I., Siegfried, Z., Mendelsohn, M., Nemes, A., Temper, V., Razin, A., and Cedar, H. (1994). Spl elements protect a CpG island from de novo methylation. Nature 371, 435–438.

    Article  PubMed  CAS  Google Scholar 

  • Brien, G.L., Gambero, G., O’Connell, D.J., Jerman, E., Turner, S.A., Egan, C.M., Dunne, E.J., Jurgens, M.C., Wynne, K., Piao, L., et al. (2012). Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 19, 1273–1281.

    Article  PubMed  CAS  Google Scholar 

  • Brinkman, A.B., Gu, H., Bartels, S.J.J., Zhang, Y., Matarese, F., Simmer, F., Marks, H., Bock, C., Gnirke, A., Meissner, A., et al. (2012). Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res 22, 1128–1138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burgers, P.M.J., and Kunkel, T.A. (2017). Eukaryotic DNA replication fork. Annu Rev Biochem 86, 417–438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burgess, R.J., Zhou, H., Han, J., and Zhang, Z. (2010). A role for Gcn5 in replication-coupled nucleosome assembly. Mol Cell 37, 469–480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao, R., Wang, H., He, J., Erdjument-Bromage, H., Tempst, P., and Zhang, Y. (2008). Role of hPHF1 in H3K27 methylation and Hox gene silencing. Mol Cell Biol 28, 1862–1872.

    Article  PubMed  CAS  Google Scholar 

  • Casanova, M., Preissner, T., Cerase, A., Poot, R., Yamada, D., Li, X., Appanah, R., Bezstarosti, K., Demmers, J., Koseki, H., et al. (2011). Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells. Development 138, 1471–1482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang, Y., Sun, L., Kokura, K., Horton, J.R., Fukuda, M., Espejo, A., Izumi, V., Koomen, J.M., Bedford, M.T., Zhang, X., et al. (2011). MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a. Nat Commun 2, 533.

    Article  PubMed  Google Scholar 

  • Charlton, J., Downing, T.L., Smith, Z.D., Gu, H., Clement, K., Pop, R., Akopian, V., Klages, S., Santos, D.P., Tsankov, A.M., et al. (2018). Global delay in nascent strand DNA methylation. Nat Struct Mol Biol 25, 327–332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chatterjee, A., Rodger, E.J., and Eccles, M.R. (2018). Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol 51, 149–159.

    Article  PubMed  CAS  Google Scholar 

  • Chedin, F., Lieber, M.R., and Hsieh, C.L. (2002). The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci USA 99, 16916–16921.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheloufi, S., Elling, U., Hopfgartner, B., Jung, Y.L., Murn, J., Ninova, M., Hubmann, M., Badeaux, A.I., Euong Ang, C., Tenen, D., et al. (2015). The histone chaperone CAF-1 safeguards somatic cell identity. Nature 528, 218–224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, C.C., Carson, J.J., Feser, J., Tamburini, B., Zabaronick, S., Linger, J., and Tyler, J.K. (2008). Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134, 231–243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, P., Dong, L., Hu, M., Wang, Y.Z., Xiao, X., Zhao, Z., Yan, J., Wang, P.Y., Reinberg, D., Li, M., et al. (2018). Functions of FACT in breaking the nucleosome and maintaining its integrity at the single-nucleosome level. Mol Cell 71, 284–293.e4.

    Article  PubMed  CAS  Google Scholar 

  • Chen, T., Tsujimoto, N., and Li, E. (2004). The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol 24, 9048–9058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, T., Ueda, Y., Xie, S., and Li, E. (2002). A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with active de novo methylation. J Biol Chem 277, 38746–38754.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z., Yin, Q., Inoue, A., Zhang, C., and Zhang, Y. (2019). Allelic H3K27me3 to allelic DNA methylation switch maintains noncanonical imprinting in extraembryonic cells. Sci Adv 5, eaay7246.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng, J., Yang, H., Fang, J., Ma, L., Gong, R., Wang, P., Li, Z., and Xu, Y. (2015). Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat Commun 6, 7023.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, J., Yang, Y., Fang, J., Xiao, J., Zhu, T., Chen, F., Wang, P., Li, Z., Yang, H., and Xu, Y. (2013). Structural insight into coordinated recognition of trimethylated histone H3 lysine 9 (H3K9me3) by the plant homeodomain (PHD) and tandem tudor domain (TTD) of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) protein. J Biol Chem 288, 1329–1339.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, L., Zhang, X., Wang, Y., Gan, H., Xu, X., Lv, X., Hua, X., Que, J., Ordog, T., and Zhang, Z. (2019). Chromatin assembly factor 1 (CAF-1) facilitates the establishment of facultative heterochromatin during pluripotency exit. Nucl Acids Res 47, 11114–11131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choe, K.N., and Moldovan, G.L. (2017). Forging ahead through darkness: PCNA, still the principal conductor at the replication fork. Mol Cell 65, 380–392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chuang, L.S.H., Ian, H.I., Koh, T.W., Ng, H.H., Xu, G., and Li, B.F.L. (1997). Human DNA-(Cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277, 1996–2000.

    Article  PubMed  CAS  Google Scholar 

  • Clément, C., and Almouzni, G. (2015). MCM2 binding to histones H3–H4 and ASF1 supports a tetramer-to-dimer model for histone inheritance at the replication fork. Nat Struct Mol Biol 22, 587–589.

    Article  PubMed  Google Scholar 

  • Coleman, R.T., and Struhl, G. (2017). Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science 356.

  • Cooper, D.N., Taggart, M.H., and Bird, A.P. (1983). Unmethlated domains in vertebrate DNA. Nucl Acids Res 11, 647–658.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Csankovszki, G., Nagy, A., and Jaenisch, R. (2001). Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J Cell Biol 153, 773–784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Urso, A., and Brickner, J.H. (2014). Mechanisms of epigenetic memory. Trends Genet 30, 230–236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahl, J.A., Jung, I., Aanes, H., Greggains, G.D., Manaf, A., Lerdrup, M., Li, G., Kuan, S., Li, B., Lee, A.Y., et al. (2016). Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature 537, 548–552.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dekker, J., and Mirny, L. (2016). The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dennis, K., Fan, T., Geiman, T., Yan, Q., and Muegge, K. (2001). Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev 15, 2940–2944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhayalan, A., Rajavelu, A., Rathert, P., Tamas, R., Jurkowska, R.Z., Ragozin, S., and Jeltsch, A. (2010). The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem 285, 26114–26120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Disteche, C.M., and Berletch, J.B. (2015). X-chromosome inactivation and escape. J Genet 94, 591–599.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donham, D.C.II, Scorgie, J.K., and Churchill, M.E.A. (2011). The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4-DNA complexes. Nucl Acids Res 39, 5449–5458.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donovan, S., Harwood, J., Drury, L.S., and Diffley, J.F.X. (1997). Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc Natl Acad Sci USA 94, 5611–5616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drané, P., Ouararhni, K., Depaux, A., Shuaib, M., and Hamiche, A. (2010). The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24, 1253–1265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Du, W., Dong, Q., Zhang, Z., Liu, B., Zhou, T., Xu, R.M., Wang, H., Zhu, B., and Li, Y. (2019). Stella protein facilitates DNA demethylation by disrupting the chromatin association of the RING finger-type E3 ubiquitin ligase UHRF1. J Biol Chem 294, 8907–8917.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du, Z., Song, J., Wang, Y., Zhao, Y., Guda, K., Yang, S., Kao, H.Y., Xu, Y., Willis, J., Markowitz, S.D., et al. (2010). DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal 3, ra80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dukatz, M., Holzer, K., Choudalakis, M., Emperle, M., Lungu, C., Bashtrykov, P., and Jeltsch, A. (2019). H3K36me2/3 binding and DNA binding of the DNA methyltransferase DNMT3A PWWP domain both contribute to its chromatin interaction. J Mol Biol 431, 5063–5074.

    Article  PubMed  CAS  Google Scholar 

  • Duymich, C.E., Charlet, J., Yang, X., Jones, P.A., and Liang, G. (2016). DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells. Nat Commun 7, 11453.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eden, A., Gaudet, F., Waghmare, A., and Jaenisch, R. (2003). Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300, 455.

    Article  PubMed  CAS  Google Scholar 

  • Edmunds, J.W., Mahadevan, L.C., and Clayton, A.L. (2008). Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 27, 406–420.

    Article  PubMed  CAS  Google Scholar 

  • Egger, G., Jeong, S., Escobar, S.G., Cortez, C.C., Li, T.W.H., Saito, Y., Yoo, C.B., Jones, P.A., and Liang, G. (2006). Identification of DNMT1 (DNA methyltransferase 1) hypomorphs in somatic knockouts suggests an essential role for DNMT1 in cell survival. Proc Natl Acad Sci USA 103, 14080–14085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elsässer, S.J., Huang, H., Lewis, P.W., Chin, J.W., Allis, C.D., and Patel, D. J. (2012). DAXX envelops a histone H3.3-H4 dimer for H3.3-specific recognition. Nature 491, 560–565.

    Article  PubMed  PubMed Central  Google Scholar 

  • English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E.A., and Tyler, J. K. (2006). Structural basis for the histone chaperone activity of Asf1. Cell 127, 495–508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • English, C.M., Maluf, N.K., Tripet, B., Churchill, M.E.A., and Tyler, J.K. (2005). ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3–H4 heterotetramer on DNA. Biochemistry 44, 13673–13682.

    Article  PubMed  CAS  Google Scholar 

  • Epsztejn-Litman, S., Feldman, N., Abu-Remaileh, M., Shufaro, Y., Gerson, A., Ueda, J., Deplus, R., Fuks, F., Shinkai, Y., Cedar, H., et al. (2008). De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol 15, 1176–1183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Escobar, T.M., Oksuz, O., Saldaña-Meyer, R., Descostes, N., Bonasio, R., and Reinberg, D. (2019). Active and repressed chromatin domains exhibit distinct nucleosome segregation during DNA replication. Cell 179, 953–963.e11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Estève, P.O., Chang, Y., Samaranayake, M., Upadhyay, A.K., Horton, J.R., Feehery, G.R., Cheng, X., and Pradhan, S. (2011). A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat Struct Mol Biol 18, 42–48.

    Article  PubMed  Google Scholar 

  • Estève, P.O., Chin, H.G., Benner, J., Feehery, G.R., Samaranayake, M., Horwitz, G.A., Jacobsen, S.E., and Pradhan, S. (2009). Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci USA 106, 5076–5081.

    Article  PubMed  PubMed Central  Google Scholar 

  • Estève, P.O., Chin, H.G., Smallwood, A., Feehery, G.R., Gangisetty, O., Karpf, A.R., Carey, M.F., and Pradhan, S. (2006). Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 20, 3089–3103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Evrin, C., Maman, J.D., Diamante, A., Pellegrini, L., and Labib, K. (2018). Histone H2A-H2B binding by Pol a in the eukaryotic replisome contributes to the maintenance of repressive chromatin. EMBO J 37.

  • Fang, J., Cheng, J., Wang, J., Zhang, Q., Liu, M., Gong, R., Wang, P., Zhang, X., Feng, Y., Lan, W., et al. (2016). Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition. Nat Commun 7, 11197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fares, J., Fares, M.Y., Khachfe, H.H., Salhab, H.A., and Fares, Y. (2020). Molecular principles of metastasis: a hallmark of cancer revisited. Sig Transduct Target Ther 5, 28.

    Article  Google Scholar 

  • Fazly, A., Li, Q., Hu, Q., Mer, G., Horazdovsky, B., and Zhang, Z. (2012). Histone chaperone Rtt106 promotes nucleosome formation using (H3-H4)2 tetramers. J Biol Chem 287, 10753–10760.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feinberg, A.P., and Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92.

    Article  PubMed  CAS  Google Scholar 

  • Fellinger, K., Rothbauer, U., Felle, M., Längst, G., and Leonhardt, H. (2009). Dimerization of DNA methyltransferase 1 is mediated by its regulatory domain. J Cell Biochem 106, 521–528.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith, A.C., and Bourc’his, D. (2018). The discovery and importance of genomic imprinting. eLife 7, e42368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferry, L., Fournier, A., Tsusaka, T., Adelmant, G., Shimazu, T., Matano, S., Kirsh, O., Amouroux, R., Dohmae, N., Suzuki, T., et al. (2017). Methylation of DNA ligase 1 by G9a/GLP recruits UHRF1 to replicating DNA and regulates DNA methylation. Mol Cell 67, 550–565.e5.

    Article  PubMed  CAS  Google Scholar 

  • Foltman, M., Evrin, C., De Piccoli, G., Jones, R.C., Edmondson, R.D., Katou, Y., Nakato, R., Shirahige, K., and Labib, K. (2013). Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Rep 3, 892–904.

    Article  PubMed  CAS  Google Scholar 

  • Formosa, T., and Winston, F. (2020). The role of FACT in managing chromatin: disruption, assembly, or repair? Nucl Acids Res 48, 11929–11941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Foster, B.M., Stolz, P., Mulholland, C.B., Montoya, A., Kramer, H., Bultmann, S., and Bartke, T. (2018). Critical role of the UBL domain in stimulating the E3 ubiquitin ligase activity of uhrf1 toward chromatin. Mol Cell 72, 739–752.e9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraga, M.F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., Bonaldi, T., Haydon, C., Ropero, S., Petrie, K., et al. (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37, 391–400.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Y.V., Yardimci, H., Long, D.T., Guainazzi, A., Bermudez, V.P., Hurwitz, J., van Oijen, A., Schärer, O.D., and Walter, J.C. (2011). Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146, 931–941.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuks, F., Hurd, P.J., Deplus, R., and Kouzarides, T. (2003). The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucl Acids Res 31, 2305–2312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galupa, R., and Heard, E. (2018). X-Chromosome inactivation: a crossroads between chromosome architecture and gene regulation. Annu Rev Genet 52, 535–566.

    Article  PubMed  CAS  Google Scholar 

  • Gambus, A., Jones, R.C., Sanchez-Diaz, A., Kanemaki, M., van Deursen, F., Edmondson, R.D., and Labib, K. (2006). GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8, 358–366.

    Article  PubMed  CAS  Google Scholar 

  • Gan, H., Serra-Cardona, A., Hua, X., Zhou, H., Labib, K., Yu, C., and Zhang, Z. (2018). The Mcm2-Ctf4-Pola axis facilitates parental histone H3–H4 transfer to lagging strands. Mol Cell 72, 140–151.e3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao, Y., Gan, H., Lou, Z., and Zhang, Z. (2018). Asf1a resolves bivalent chromatin domains for the induction of lineage-specific genes during mouse embryonic stem cell differentiation. Proc Natl Acad Sci USA 115.

  • Gaydos, L.J., Rechtsteiner, A., Egelhofer, T.A., Carroll, C.R., and Strome, S. (2012). Antagonism between MES-4 and Polycomb repressive complex 2 promotes appropriate gene expression in C. elegans germ cells. Cell Rep 2, 1169–1177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ge, Y.Z., Pu, M.T., Gowher, H., Wu, H.P., Ding, J.P., Jeltsch, A., and Xu, G.L. (2004). Chromatin targeting of de novo DNA methyltransferases by the PWWP domain. J Biol Chem 279, 25447–25454.

    Article  PubMed  CAS  Google Scholar 

  • Gerace, E.L., Halic, M., and Moazed, D. (2010). The methyltransferase activity of Clr4Suv39h triggers RNAi independently of histone H3K9 methylation. Mol Cell 39, 360–372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ginno, P.A., Lott, P.L., Christensen, H.C., Korf, I., and Chédin, F. (2012). R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45, 814–825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldberg, A.D., Banaszynski, L.A., Noh, K.M., Lewis, P.W., Elsaesser, S. J., Stadler, S., Dewell, S., Law, M., Guo, X., Li, X., et al. (2010). Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678–691.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomes, A.P., Ilter, D., Low, V., Rosenzweig, A., Shen, Z.J., Schild, T., Rivas, M.A., Er, E.E., McNally, D.R., Mutvei, A.P., et al. (2019). Dynamic incorporation of histone H3 variants into chromatin is essential for acquisition of aggressive traits and metastatic colonization. Cancer Cell 36, 402–417.e13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González-Magaña, A., de Opakua, A.I., Merino, N., Monteiro, H., Diercks, T., Murciano-Calles, J., Luque, I., Bernadó, P., Cordeiro, T.N., Biasio, A.D., et al. (2019). Double monoubiquitination modifies the molecular recognition properties of p15PAF promoting binding to the reader module of Dnmt1. ACS Chem Biol acschembio.9b00679.

  • Gopalakrishnan, S., Van Emburgh, B.O., Shan, J., Su, Z., Fields, C.R., Vieweg, J., Hamazaki, T., Schwartz, P.H., Terada, N., and Robertson, K. D. (2009). A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding. Mol Cancer Res 7, 1622–1634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gottschling, D.E., Aparicio, O.M., Billington, B.L., and Zakian, V.A. (1990). Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762.

    Article  PubMed  CAS  Google Scholar 

  • Greer, E.L., Maures, T.J., Ucar, D., Hauswirth, A.G., Mancini, E., Lim, J.P., Benayoun, B.A., Shi, Y., and Brunet, A. (2011). Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479, 365–371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grewal, S.I.S., and Jia, S. (2007). Heterochromatin revisited. Nat Rev Genet 8, 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Grewal, S.I.S., and Klar, A.J.S. (1996). Chromosomal inheritance of epigenetic states in fission yeast during mitosis and meiosis. Cell 86, 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Grewal, S.I.S., and Moazed, D. (2003). Heterochromatin and epigenetic control of gene expression. Science 301, 798–802.

    Article  PubMed  CAS  Google Scholar 

  • Groth, A., Corpet, A., Cook, A.J.L., Roche, D., Bartek, J., Lukas, J., and Almouzni, G.. (2007). Regulation of replication fork progression through histone supply and demand. Science 318, 1928–1931.

    Article  PubMed  CAS  Google Scholar 

  • Gruszka, D.T., Xie, S., Kimura, H., and Yardimci, H. (2020). Single-molecule imaging reveals control of parental histone recycling by free histones during DNA replication. Sci Adv 6, eabc0330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo, X., Wang, L., Li, J., Ding, Z., Xiao, J., Yin, X., He, S., Shi, P., Dong, L., Li, G., et al. (2015). Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517, 640–644.

    Article  PubMed  CAS  Google Scholar 

  • Hall, I.M., Shankaranarayana, G.D., Noma, K.I., Ayoub, N., Cohen, A., and Grewal, S.I.S. (2002). Establishment and maintenance of a heterochromatin domain. Science 297, 2232–2237.

    Article  PubMed  CAS  Google Scholar 

  • Han, J., Zhang, H., Zhang, H., Wang, Z., Zhou, H., and Zhang, Z. (2013). A CUL4 E3 ubiquitin ligase regulates histone hand-off during nucleosome assembly. Cell 155, 817–829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han, J., Zhou, H., Horazdovsky, B., Zhang, K., Xu, R.M., and Zhang, Z. (2007a). Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315, 653–655.

    Article  PubMed  CAS  Google Scholar 

  • Han, J., Zhou, H., Li, Z., Xu, R.M., and Zhang, Z. (2007b). The Rtt109-Vps75 histone acetyltransferase complex acetylates non-nucleosomal histone H3. J Biol Chem 282, 14158–14164.

    Article  PubMed  CAS  Google Scholar 

  • Han, M., Li, J., Cao, Y., Huang, Y., Li, W., Zhu, H., Zhao, Q., Han, J.D.J., Wu, Q., Li, J., et al. (2020). A role for LSH in facilitating DNA methylation by DNMT1 through enhancing UHRF1 chromatin association. Nucl Acids Res 48, 12116–12134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto, H., Horton, J.R., Zhang, X., Bostick, M., Jacobsen, S.E., and Cheng, X. (2008). The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455, 826–829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto, H., Horton, J.R., Zhang, X., and Cheng, X. (2009). UHRF1, a modular multi-domain protein, regulates replication-coupled crosstalk between DNA methylation and histone modifications. Epigenetics 4, 8–14.

    Article  PubMed  CAS  Google Scholar 

  • He, C., Liu, N., Xie, D., Liu, Y., Xiao, Y., and Li, F. (2019). Structural basis for histone H3K4me3 recognition by the N-terminal domain of the PHD finger protein Spp1. Biochem J 476, 1957–1973.

    Article  PubMed  CAS  Google Scholar 

  • He, H., Li, Y., Dong, Q., Chang, A.Y., Gao, F., Chi, Z., Su, M., Zhang, F., Ban, H., Martienssen, R., et al. (2017). Coordinated regulation of heterochromatin inheritance by Dpb3-Dpb4 complex. Proc Natl Acad Sci USA 114, 12524–12529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heard, E., and Martienssen, R.A. (2014). Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157, 95–109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heyn, P., Logan, C.V., Fluteau, A., Challis, R.C., Auchynnikava, T., Martin, C.A., Marsh, J.A., Taglini, F., Kilanowski, F., Parry, D.A., et al. (2019). Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions. Nat Genet 51, 96–105.

    Article  PubMed  CAS  Google Scholar 

  • Højfeldt, J.W., Hedehus, L., Laugesen, A., Tatar, T., Wiehle, L., and Helin, K. (2019). Non-core subunits of the PRC2 complex are collectively required for its target-site specificity. Mol Cell 76, 423–436.e3.

    Article  PubMed  Google Scholar 

  • Holoch, D., and Margueron, R. (2017). Mechanisms regulating prc2 recruitment and enzymatic activity. Trends Biochem Sci 42, 531–542.

    Article  PubMed  CAS  Google Scholar 

  • Hon, G.C., Rajagopal, N., Shen, Y., McCleary, D.F., Yue, F., Dang, M.D., and Ren, B. (2013). Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat Genet 45, 1198–1206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hörmanseder, E., Simeone, A., Allen, G.E., Bradshaw, C.R., Figlmüller, M., Gurdon, J., and Jullien, J. (2017). H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell 21, 135–143.e6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Horsthemke, B. (2018). A critical view on transgenerational epigenetic inheritance in humans. Nat Commun 9, 2973.

    Article  PubMed  PubMed Central  Google Scholar 

  • Horsthemke, B., and Buiting, K. (2008). Genomic imprinting and imprinting defects in humans. Adv Genet 61, 225–246.

    Article  PubMed  CAS  Google Scholar 

  • Hu, Y., Tareen, A., Sheu, Y.J., Ireland, W.T., Speck, C., Li, H., Joshua-Tor, L., Kinney, J.B., and Stillman, B. (2020). Evolution of DNA replication origin specification and gene silencing mechanisms. Nat Commun 11, 5175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, C., and Zhu, B. (2018). Roles of H3K36-specific histone methyltransferases in transcription: antagonizing silencing and safeguarding transcription fidelity. Biophys Rep 4, 170–177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, H., Strømme, C.B., Saredi, G., Hödl, M., Strandsby, A., González-Aguilera, C., Chen, S., Groth, A., and Patel, D.J. (2015). A unique binding mode enables MCM2 to chaperone histones H3–H4 at replication forks. Nat Struct Mol Biol 22, 618–626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, S., Zhou, H., Katzmann, D., Hochstrasser, M., Atanasova, E., and Zhang, Z. (2005). Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proc Natl Acad Sci USA 102, 13410–13415.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang, S., Zhou, H., Tarara, J., and Zhang, Z. (2007). A novel role for histone chaperones CAF-1 and Rtt106p in heterochromatin silencing. EMBO J 26, 2274–2283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunkapiller, J., Shen, Y., Diaz, A., Cagney, G., McCleary, D., Ramalho-Santos, M., Krogan, N., Ren, B., Song, J.S., and Reiter, J.F. (2012). Polycomb-like 3 promotes Polycomb repressive complex 2 binding to CpG islands and embryonic stem cell self-renewal. PLoS Genet 8, e1002576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ilves, I., Petojevic, T., Pesavento, J.J., and Botchan, M.R. (2010). Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 37, 247–258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue, A., Jiang, L., Lu, F., Suzuki, T., and Zhang, Y. (2017a). Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 547, 419–424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue, A., Jiang, L., Lu, F., and Zhang, Y. (2017b). Genomic imprinting of Xist by maternal H3K27me3. Genes Dev 31, 1927–1932.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishimi, Y., Komamura-Kohno, Y., Arai, K., and Masai, H. (2001). Biochemical activities associated with mouse Mcm2 protein. J Biol Chem 276, 42744–42752.

    Article  PubMed  CAS  Google Scholar 

  • Ishimi, Y., Komamura, Y., You, Z., and Kimura, H. (1998). Biochemical function of mouse minichromosome maintenance 2 protein. J Biol Chem 273, 8369–8375.

    Article  PubMed  CAS  Google Scholar 

  • Ishiuchi, T., Enriquez-Gasca, R., Mizutani, E., Bošković, A., Ziegler-Birling, C., Rodriguez-Terrones, D., Wakayama, T., Vaquerizas, J.M., and Torres-Padilla, M.E. (2015). Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat Struct Mol Biol 22, 662–671.

    Article  PubMed  CAS  Google Scholar 

  • Ishiyama, S., Nishiyama, A., Saeki, Y., Moritsugu, K., Morimoto, D., Yamaguchi, L., Arai, N., Matsumura, R., Kawakami, T., Mishima, Y., et al. (2017). Structure of the DNMT1 reader module complexed with a unique two-mono-ubiquitin mark on histone H3 reveals the basis for DNA methylation maintenance. Mol Cell 68, 350–360.e7.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, J.P., Lindroth, A.M., Cao, X., and Jacobsen, S.E. (2002). Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M., Krassowska, A., Gilbert, N., Chevassut, T., Forrester, L., Ansell, J., and Ramsahoye, B. (2004). Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol 24, 8862–8871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jégu, T., Aeby, E., and Lee, J.T. (2017). The X chromosome in space. Nat Rev Genet 18, 377–389.

    Article  PubMed  Google Scholar 

  • Jeltsch, A., and Jurkowska, R.Z. (2014). New concepts in DNA methylation. Trends Biochem Sci 39, 310–318.

    Article  PubMed  CAS  Google Scholar 

  • Jia, D., Jurkowska, R.Z., Zhang, X., Jeltsch, A., and Cheng, X. (2007). Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449, 248–251.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia, S., Noma, K., and Grewal, S.I.S. (2004). RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science 304, 1971–1976.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P.A., Issa, J.P.J., and Baylin, S. (2016). Targeting the cancer epigenome for therapy. Nat Rev Genet 17, 630–641.

    Article  PubMed  CAS  Google Scholar 

  • Jones, P.L., Veenstra, G.J.C., Wade, P.A., Vermaak, D., Kass, S.U., Landsberger, N., Strouboulis, J., and Wolffe, A.P. (1998). Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19, 187–191.

    Article  PubMed  CAS  Google Scholar 

  • Jurkowska, R.Z., Rajavelu, A., Anspach, N., Urbanke, C., Jankevicius, G., Ragozin, S., Nellen, W., and Jeltsch, A. (2011). Oligomerization and binding of the Dnmt3a DNA methyltransferase to parallel DNA molecules. J Biol Chem 286, 24200–24207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang, B., Pu, M., Hu, G., Wen, W., Dong, Z., Zhao, K., Stillman, B., and Zhang, Z. (2011). Phosphorylation of H4 Ser 47 promotes HIRA-mediated nucleosome assembly. Genes Dev 25, 1359–1364.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karg, E., Smets, M., Ryan, J., Forné, I., Qin, W., Mulholland, C.B., Kalideris, G., Imhof, A., Bultmann, S., and Leonhardt, H. (2017). Ubiquitome analysis reveals PCNA-associated factor 15 (PAF15) as a specific ubiquitination target of UHRF1 in embryonic stem cells. J Mol Biol 429, 3814–3824.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, P.D., Kobayashi, R., and Stillman, B. (1997). Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11, 345–357.

    Article  PubMed  CAS  Google Scholar 

  • Kaya, H., Shibahara, K., Taoka, K., Iwabuchi, M., Stillman, B., and Araki, T. (2001). FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems. Cell 104, 131–142.

    Article  PubMed  CAS  Google Scholar 

  • Kim, H.S., Choi, E.S., Shin, J.A., Jang, Y.K., and Park, S.D. (2004). Regulation of Swi6/HP1-dependent heterochromatin assembly by cooperation of components of the mitogen-activated protein kinase pathway and a histone deacetylase Clr6. J Biol Chem 279, 42850–42859.

    Article  PubMed  CAS  Google Scholar 

  • Ku, M., Koche, R.P., Rheinbay, E., Mendenhall, E.M., Endoh, M., Mikkelsen, T.S., Presser, A., Nusbaum, C., Xie, X., Chi, A.S., et al. (2008). Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4, e1000242.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo, A.J., Cheung, P., Chen, K., Zee, B.M., Kioi, M., Lauring, J., Xi, Y., Park, B.H., Shi, X., Garcia, B.A., et al. (2011). NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 44, 609–620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurat, C.F., Yeeles, J.T.P., Patel, H., Early, A., and Diffley, J.F.X. (2017). Chromatin controls DNA replication origin selection, lagging-strand synthesis, and replication fork rates. Mol Cell 65, 117–130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • La Salle, S., and Trasler, J.M. (2006). Dynamic expression of DNMT3a and DNMT3b isoforms during male germ cell development in the mouse. Dev Biol 296, 71–82.

    Article  PubMed  CAS  Google Scholar 

  • Laprell, F., Finkl, K., and Müller, J. (2017). Propagation of Polycomb-repressed chromatin requires sequence-specific recruitment to DNA. Science 356, 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Lehnertz, B., Ueda, Y., Derijck, A.A.H.A., Braunschweig, U., Perez-Burgos, L., Kubicek, S., Chen, T., Li, E., Jenuwein, T., and Peters, A.H. F.M. (2003). Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13, 1192–1200.

    Article  PubMed  CAS  Google Scholar 

  • LeRoy, G., Orphanides, G., Lane, W.S., and Reinberg, D. (1998). Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282, 1900–1904.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, P.W., Elsaesser, S.J., Noh, K.M., Stadler, S.C., and Allis, C.D. (2010). Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 107, 14075–14080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, B.Z., Huang, Z., Cui, Q.Y., Song, X.H., Du, L., Jeltsch, A., Chen, P., Li, G., Li, E., and Xu, G.L. (2011). Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase. Cell Res 21, 1172–1181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, H., Liefke, R., Jiang, J., Kurland, J.V., Tian, W., Deng, P., Zhang, W., He, Q., Patel, D.J., Bulyk, M.L., et al. (2017). Polycomb-like proteins link the PRC2 complex to CpG islands. Nature 549, 287–291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, H., Rauch, T., Chen, Z.X., Szabó, P.E., Riggs, A.D., and Pfeifer, G.P. (2006). The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem 281, 19489–19500.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Gan, J., Sun, Y., Xu, Z., Yang, J., Sun, Y., and Li, C. (2020a). Architectural proteins for the formation and maintenance of the 3D genome. Sci China Life Sci 63, 795–810.

    Article  PubMed  CAS  Google Scholar 

  • Li, Q., Burgess, R., and Zhang, Z. (2013). All roads lead to chromatin: multiple pathways for histone deposition. Biochim Biophys Acta (BBA)-Gene Regulatory Mech 1819, 238–246.

    Article  Google Scholar 

  • Li, Q., Zhou, H., Wurtele, H., Davies, B., Horazdovsky, B., Verreault, A., and Zhang, Z. (2008). Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134, 244–255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, T., Wang, L., Du, Y., Xie, S., Yang, X., Lian, F., Zhou, Z., and Qian, C. (2018a). Structural and mechanistic insights into UHRF1-mediated DNMT1 activation in the maintenance DNA methylation. Nucl Acids Res 46, 3218–3231.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, Y., Zhang, Z., Chen, J., Liu, W., Lai, W., Liu, B., Li, X., Liu, L., Xu, S., Dong, Q., et al. (2018b). Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature 564, 136–140.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., Hua, X., Serra-Cardona, A., Xu, X., Gan, S., Zhou, H., Yang, W.S., Chen, C.L., Xu, R.M., and Zhang, Z. (2020b). DNA polymerase a interacts with H3–H4 and facilitates the transfer of parental histones to lagging strands. Sci Adv 6, eabb5820.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang, G., Chan, M.F., Tomigahara, Y., Tsai, Y.C., Gonzales, F.A., Li, E., Laird, P.W., and Jones, P.A. (2002). Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22, 480–491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, C.P., Xiong, C., Wang, M., Yu, Z., Yang, N., Chen, P., Zhang, Z., Li, G., and Xu, R.M. (2012a). Structure of the variant histone H3.3-H4 heterodimer in complex with its chaperone DAXX. Nat Struct Mol Biol 19, 1287–1292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, N., Zhang, Z., Wu, H., Jiang, Y., Meng, L., Xiong, J., Zhao, Z., Zhou, X., Li, J., Li, H., et al. (2015). Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev 29, 379–393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, S., Xu, Z., Leng, H., Zheng, P., Yang, J., Chen, K., Feng, J., and Li, Q. (2017). RPA binds histone H3–H4 and functions in DNA replication-coupled nucleosome assembly. Science 355, 415–420.

    Article  PubMed  CAS  Google Scholar 

  • Liu, W.H., Roemer, S.C., Port, A.M., and Churchill, M.E.A. (2012b). CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA. Nucl Acids Res 40, 11229–11239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, W.H., Roemer, S.C., Zhou, Y., Shen, Z.J., Dennehey, B.K., Balsbaugh, J.L., Liddle, J.C., Nemkov, T., Ahn, N.G., Hansen, K.C., et al. (2016). The Cac1 subunit of histone chaperone CAF-1 organizes CAF-1-H3/H4 architecture and tetramerizes histones. eLife 5, e18023.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y., Zhou, K., Zhang, N., Wei, H., Tan, Y.Z., Zhang, Z., Carragher, B., Potter, C.S., D’Arcy, S., and Luger, K. (2020). FACT caught in the act of manipulating the nucleosome. Nature 577, 426–431.

    Article  PubMed  CAS  Google Scholar 

  • Long, H., Zhang, L., Lv, M., Wen, Z., Zhang, W., Chen, X., Zhang, P., Li, T., Chang, L., Jin, C., et al. (2020). H2A.Z facilitates licensing and activation of early replication origins. Nature 577, 576–581.

    Article  PubMed  CAS  Google Scholar 

  • Loyola, A., and Almouzni, G. (2007). Marking histone H3 variants: how, when and why? Trends Biochem Sci 32, 425–433.

    Article  PubMed  CAS  Google Scholar 

  • Loyola, A., Bonaldi, T., Roche, D., Imhof, A., and Almouzni, G. (2006). PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 24, 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Lu, C., Jain, S.U., Hoelper, D., Bechet, D., Molden, R.C., Ran, L., Murphy, D., Venneti, S., Hameed, M., Pawel, B.R., et al. (2016). Histone H3K36 mutations promote sarcomagenesis through altered histone methylation landscape. Science 352, 844–849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucchini, R., Wellinger, R.E., and Sogo, J.M. (2001). Nucleosome positioning at the replication fork. EMBO J 20, 7294–7302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacAlpine, D.M. (2021). Stochastic initiation of DNA replication across the human genome. Mol Cell 81, 2873–2874.

    Article  PubMed  CAS  Google Scholar 

  • MacAlpine, D.M., and Almouzni, G. (2013). Chromatin and DNA replication. Cold Spring Harbor Perspectives Biol 5, a010207.

    Article  Google Scholar 

  • Macleod, D., Charlton, J., Mullins, J., and Bird, A.P. (1994). Sp1 sites in the mouse APRT gene promoter are required to prevent methylation of the CpG island. Genes Dev 8, 2282–2292.

    Article  PubMed  CAS  Google Scholar 

  • Madamba, E.V., Berthet, E.B., and Francis, N.J. (2017). Inheritance of histones H3 and H4 during DNA replication in vitro. Cell Rep 21, 1361–1374.

    Article  PubMed  CAS  Google Scholar 

  • Margueron, R., Justin, N., Ohno, K., Sharpe, M.L., Son, J., Drury William J. I., Voigt, P., Martin, S.R., Taylor, W.R., de Marco, V., et al. (2009). Role of the Polycomb protein EED in the propagation of repressive histone marks. Nature 461, 762–767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Margueron, R., and Reinberg, D. (2010). Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11, 285–296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Margueron, R., and Reinberg, D. (2011). The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masumoto, H., Hawke, D., Kobayashi, R., and Verreault, A. (2005). A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436, 294–298.

    Article  PubMed  CAS  Google Scholar 

  • Mattiroli, F., Gu, Y., Yadav, T., Balsbaugh, J.L., Harris, M.R., Findlay, E.S., Liu, Y., Radebaugh, C.A., Stargell, L.A., Ahn, N.G., et al. (2017). DNA-mediated association of two histone-bound complexes of yeast chromatin assembly factor-1 (CAF-1) drives tetrasome assembly in the wake of DNA replication. eLife 6, e22799.

    Article  PubMed  PubMed Central  Google Scholar 

  • McDonald, O.G., Li, X., Saunders, T., Tryggvadottir, R., Mentch, S.J., Warmoes, M.O., Word, A.E., Carrer, A., Salz, T.H., Natsume, S., et al. (2017). Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet 49, 367–376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKnight, S.L., and Miller, O.L.Jr. (1977). Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell 12, 795–804.

    Article  PubMed  CAS  Google Scholar 

  • Mello, J.A., Silljé, H.H.W., Roche, D.M.J., Kirschner, D.B., Nigg, E.A., and Almouzni, G. (2002). Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep 3, 329–334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ming, X., Zhang, Z., Zou, Z., Lv, C., Dong, Q., He, Q., Yi, Y., Li, Y., Wang, H., and Zhu, B. (2021a). Author correction: kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration. Cell Res 31, 373.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ming, X., Zhu, B., and Li, Y. (2021b). Mitotic inheritance of DNA methylation: more than just copy and paste. J Genet Genomics 48, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Moazed, D. (2011). Mechanisms for the inheritance of chromatin states. Cell 146, 510–518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohn, F., Weber, M., Rebhan, M., Roloff, T.C., Richter, J., Stadler, M.B., Bibel, M., and Schübeler, D. (2008). Lineage-specific Polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30, 755–766.

    Article  PubMed  CAS  Google Scholar 

  • Monk, D., Mackay, D.J.G., Eggermann, T., Maher, E.R., and Riccio, A. (2019). Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet 20, 235–248.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, A.J., and Shen, X. (2009). Chromatin remodelling beyond transcription: the INO80 and SWR1 complexes. Nat Rev Mol Cell Biol 10, 373–384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Motamedi, M.R., Verdel, A., Colmenares, S.U., Gerber, S.A., Gygi, S.P., and Moazed, D. (2004). Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 119, 789–802.

    Article  PubMed  CAS  Google Scholar 

  • Muotri, A.R., Marchetto, M.C.N., Coufal, N.G., Oefner, R., Yeo, G., Nakashima, K., and Gage, F.H. (2010). L1 retrotransposition in neurons is modulated by MeCP2. Nature 468, 443–446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murayama, A., Sakura, K., Nakama, M., Yasuzawa-Tanaka, K., Fujita, E., Tateishi, Y., Wang, Y., Ushijima, T., Baba, T., Shibuya, K., et al. (2006). A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory. EMBO J 25, 1081–1092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakayama, J., Klar, A.J., and Grewal, S.I. (2000). A chromodomain protein, Swi6, performs imprinting functions in fission yeast during mitosis and meiosis. Cell 101, 307–317.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D., and Grewal, S.I.S. (2001). Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113.

    Article  PubMed  CAS  Google Scholar 

  • Nan, X., Ng, H.H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N., and Bird, A. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389.

    Article  PubMed  CAS  Google Scholar 

  • Neri, F., Incarnato, D., Krepelova, A., Rapelli, S., Pagnani, A., Zecchina, R., Parlato, C., and Oliviero, S. (2013). Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells. Genome Biol 14, R91.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng, R.K., and Gurdon, J.B. (2008). Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol 10, 102–109.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama, A., Mulholland, C.B., Bultmann, S., Kori, S., Endo, A., Saeki, Y., Qin, W., Trummer, C., Chiba, Y., Yokoyama, H., et al. (2020). Two distinct modes of DNMT1 recruitment ensure stable maintenance DNA methylation. Nat Commun 11, 1222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishiyama, A., Yamaguchi, L., Sharif, J., Johmura, Y., Kawamura, T., Nakanishi, K., Shimamura, S., Arita, K., Kodama, T., Ishikawa, F., et al. (2013). Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature 502, 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Noma, K., Allis, C.D., and Grewal, S.I.S. (2001). Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293, 1150–1155.

    Article  PubMed  CAS  Google Scholar 

  • Ohm, J.E., McGarvey, K.M., Yu, X., Cheng, L., Schuebel, K.E., Cope, L., Mohammad, H.P., Chen, W., Daniel, V.C., Yu, W., et al. (2007). A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39, 237–242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.

    Article  PubMed  CAS  Google Scholar 

  • Oksuz, O., Narendra, V., Lee, C.H., Descostes, N., LeRoy, G., Raviram, R., Blumenberg, L., Karch, K., Rocha, P.P., Garcia, B.A., et al. (2018). Capturing the onset of PRC2-mediated repressive domain formation. Mol Cell 70, 1149–1162.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ooi, S.K.T., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., Erdjument-Bromage, H., Tempst, P., Lin, S.P., Allis, C.D., et al. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448, 714–717.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orphanides, G., LeRoy, G., Chang, C.H., Luse, D.S., and Reinberg, D. (1998). FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92, 105–116.

    Article  PubMed  CAS  Google Scholar 

  • Otani, J., Nankumo, T., Arita, K., Inamoto, S., Ariyoshi, M., and Shirakawa, M. (2009). Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep 10, 1235–1241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papamichos-Chronakis, M., and Peterson, C.L. (2008). The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat Struct Mol Biol 15, 338–345.

    Article  PubMed  CAS  Google Scholar 

  • Papp, B., and Müller, J. (2006). Histone trimethylation and the maintenance of transcriptional ON and OFF states by trxG and PcG proteins. Genes Dev 20, 2041–2054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters, J. (2014). The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet 15, 517–530.

    Article  PubMed  CAS  Google Scholar 

  • Petryk, N., Dalby, M., Wenger, A., Stromme, C.B., Strandsby, A., Andersson, R., and Groth, A. (2018). MCM2 promotes symmetric inheritance of modified histones during DNA replication. Science 361, 1389–1392.

    Article  PubMed  CAS  Google Scholar 

  • Pinter, S.F., Sadreyev, R.I., Yildirim, E., Jeon, Y., Ohsumi, T.K., Borowsky, M., and Lee, J.T. (2012). Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations. Genome Res 22, 1864–1876.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plath, K., Mlynarczyk-Evans, S., Nusinow, D.A., and Panning, B. (2002). Xist RNA and the Mechanism of X Chromosome Inactivation. Annu Rev Genet 36, 233–278.

    Article  PubMed  CAS  Google Scholar 

  • Polo, S.E., Theocharis, S.E., Grandin, L., Gambotti, L., Antoni, G., Savignoni, A., Asselain, B., Patsouris, E., and Almouzni, G. (2010). Clinical significance and prognostic value of chromatin assembly factor-1 overexpression in human solid tumours. Histopathology 57, 716–724.

    Article  PubMed  Google Scholar 

  • Popovic, R., Martinez-Garcia, E., Giannopoulou, E.G., Zhang, Q., Zhang, Q., Ezponda, T., Shah, M.Y., Zheng, Y., Will, C.M., Small, E.C., et al. (2014). Histone methyltransferase MMSET/NSD2 alters EZH2 binding and reprograms the myeloma epigenome through global and focal changes in H3K36 and H3K27 methylation. PLoS Genet 10, e1004566.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pradhan, S., Bacolla, A., Wells, R.D., and Roberts, R.J. (1999). Recombinant human DNA (cytosine-5) methyltransferase. J Biol Chem 274, 33002–33010.

    Article  PubMed  CAS  Google Scholar 

  • Ptashne, M. (2013). Faddish stuff: epigenetics and the inheritance of acquired characteristics. FASEB J 27, 1–2.

    Article  PubMed  CAS  Google Scholar 

  • Putiri, E.L., Tiedemann, R.L., Thompson, J.J., Liu, C., Ho, T., Choi, J.H., and Robertson, K.D. (2014). Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells. Genome Biol 15, R81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian, C., Li, S., Jakoncic, J., Zeng, L., Walsh, M.J., and Zhou, M.M. (2008). Structure and hemimethylated CpG binding of the SRA domain from human UHRF1. J Biol Chem 283, 34490–34494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin, S., and Min, J. (2014). Structure and function of the nucleosome-binding PWWP domain. Trends Biochem Sci 39, 536–547.

    Article  PubMed  CAS  Google Scholar 

  • Qin, W., Wolf, P., Liu, N., Link, S., Smets, M., La Mastra, F., Forné, I., Pichler, G., Hörl, D., Fellinger, K., et al. (2015). DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Res 25, 911–929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ragunathan, K., Jih, G., and Moazed, D. (2015). Epigenetic inheritance uncoupled from sequence-specific recruitment. Science 348, 1258699.

    Article  PubMed  Google Scholar 

  • Raiymbek, G., An, S., Khurana, N., Gopinath, S., Larkin, A., Biswas, S., Trievel, R.C., Cho, U.S., and Ragunathan, K. (2020). An H3K9 methylation-dependent protein interaction regulates the non-enzymatic functions of a putative histone demethylase. eLife 9, e53155.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajakumara, E., Wang, Z., Ma, H., Hu, L., Chen, H., Lin, Y., Guo, R., Wu, F., Li, H., Lan, F., et al. (2011). PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression. Mol Cell 43, 275–284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramachandran, S., and Henikoff, S. (2016). Transcriptional regulators compete with nucleosomes post-replication. Cell 165, 580–592.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramsahoye, B.H., Biniszkiewicz, D., Lyko, F., Clark, V., Bird, A.P., and Jaenisch, R. (2000). Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci USA 97, 5237–5242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rasmussen, K.D., and Helin, K. (2016). Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 30, 733–750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D., et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599.

    Article  PubMed  CAS  Google Scholar 

  • Reddy, B.D., Wang, Y., Niu, L., Higuchi, E.C., Marguerat, S.B., Bähler, J., Smith, G.R., and Jia, S. (2011). Elimination of a specific histone H3K14 acetyltransferase complex bypasses the RNAi pathway to regulate pericentric heterochromatin functions. Genes Dev 25, 214–219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinberg, D., and Vales, L.D. (2018). Chromatin domains rich in inheritance. Science 361, 33–34.

    Article  PubMed  CAS  Google Scholar 

  • Remacha, L., Currás-Freixes, M., Torres-Ruiz, R., Schiavi, F., Torres-Pérez, R., Calsina, B., Letón, R., Comino-Méndez, I., Roldán-Romero, J.M., Montero-Conde, C., et al. (2018). Gain-of-function mutations in DNMT3A in patients with paraganglioma. Genet Med 20, 1644–1651.

    Article  PubMed  CAS  Google Scholar 

  • Ren, W., Fan, H., Grimm, S.A., Guo, Y., Kim, J.J., Yin, J., Li, L., Petell, C. J., Tan, X.F., Zhang, Z.M., et al. (2020). Direct readout of heterochromatic H3K9me3 regulates DNMT1-mediated maintenance DNA methylation. Proc Natl Acad Sci USA 117, 18439–18447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ren, W., Fan, H., Grimm, S.A., Kim, J.J., Li, L., Guo, Y., Petell, C.J., Tan, X.F., Zhang, Z.M., Coan, J.P., et al. (2021). DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Nat Commun 12, 2490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez-Martin, B., Alvarez, E.G., Baez-Ortega, A., Zamora, J., Supek, F., Demeulemeester, J., Santamarina, M., Ju, Y.S., Temes, J., Garcia-Souto, D., et al. (2020). Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 52, 306–319.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rondelet, G., Dal Maso, T., Willems, L., and Wouters, J. (2016). Structural basis for recognition of histone H3K36me3 nucleosome by human de novo DNA methyltransferases 3A and 3B. J Struct Biol 194, 357–367.

    Article  PubMed  CAS  Google Scholar 

  • Rose, N.R., and Klose, R.J. (2014). Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta (BBA) — Gene Regulatory Mech 1839, 1362–1372.

    Article  CAS  Google Scholar 

  • Rothbart, S.B., Dickson, B.M., Ong, M.S., Krajewski, K., Houliston, S., Kireev, D.B., Arrowsmith, C.H., and Strahl, B.D. (2013). Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev 27, 1288–1298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rothbart, S.B., Krajewski, K., Nady, N., Tempel, W., Xue, S., Badeaux, A. I., Barsyte-Lovejoy, D., Martinez, J.Y., Bedford, M.T., Fuchs, S.M., et al. (2012). Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 19, 1155–1160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rottach, A., Frauer, C., Pichler, G., Bonapace, I.M., Spada, F., and Leonhardt, H. (2010). The multi-domain protein Np95 connects DNA methylation and histone modification. Nucl Acids Res 38, 1796–1804.

    Article  PubMed  CAS  Google Scholar 

  • Sadeghi, L., Prasad, P., Ekwall, K., Cohen, A., and Svensson, J.P. (2015). The Paf1 complex factors Leo1 and Paf1 promote local histone turnover to modulate chromatin states in fission yeast. EMBO Rep 16, 1673–1687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sado, T., Okano, M., Li, E., and Sasaki, H. (2004). De novo DNA methylation is dispensable for the initiation and propagation of X chromosome inactivation. Development 131, 975–982.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger, Y., Straussman, R., Keshet, I., Farkash, S., Hecht, M., Zimmerman, J., Eden, E., Yakhini, Z., Ben-Shushan, E., Reubinoff, B. E., et al. (2007). Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39, 232–236.

    Article  PubMed  CAS  Google Scholar 

  • Schlissel, G., and Rine, J. (2019). The nucleosome core particle remembers its position through DNA replication and RNA transcription. Proc Natl Acad Sci USA 116, 20605–20611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmitges, F.W., Prusty, A.B., Faty, M., Stützer, A., Lingaraju, G.M., Aiwazian, J., Sack, R., Hess, D., Li, L., Zhou, S., et al. (2011). Histone methylation by PRC2 is inhibited by active chromatin marks. Mol Cell 42, 330–341.

    Article  PubMed  CAS  Google Scholar 

  • Seale, R.L. (1976). Studies on the mode of segregation of histone nu bodies during replication in HeLa cells. Cell 9, 423–429.

    Article  PubMed  CAS  Google Scholar 

  • Sendzikaité, G., Hanna, C.W., Stewart-Morgan, K.R., Ivanova, E., and Kelsey, G. (2019). A DNMT3A PWWP mutation leads to methylation of bivalent chromatin and growth retardation in mice. Nat Commun 10, 1884.

    Article  PubMed  PubMed Central  Google Scholar 

  • Serra-Cardona, A., Duan, S., Yu, C., and Zhang, Z. (2022). H3K4me3 recognition by the COMPASS complex facilitates the restoration of this histone mark following DNA replication. Sci Adv 8.

  • Serra-Cardona, A., and Zhang, Z. (2017). Replication-coupled nucleosome assembly in the passage of epigenetic information and cell identity. Trends Biochem Sci 43, 136–148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shan, C.M., Bao, K., Diedrich, J., Chen, X., Lu, C., Yates Iii, J.R., and Jia, S. (2020). The INO80 complex regulates epigenetic inheritance of heterochromatin. Cell Rep 33, 108561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan, C.M., Fang, Y., and Jia, S. (2021). Leaving histone unturned for epigenetic inheritance. FEBS J, doi: https://doi.org/10.1111/febs.16260.

  • Sharif, J., Muto, M., Takebayashi, S.I., Suetake, I., Iwamatsu, A., Endo, T. A., Shinga, J., Mizutani-Koseki, Y., Toyoda, T., Okamura, K., et al. (2007). The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450, 908–912.

    Article  PubMed  CAS  Google Scholar 

  • Shibahara, K., and Stillman, B. (1999). Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96, 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Shilatifard, A. (2012). The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81, 65–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shirohzu, H., Kubota, T., Kumazawa, A., Sado, T., Chijiwa, T., Inagaki, K., Suetake, I., Tajima, S., Wakui, K., Miki, Y., et al. (2002). Three novel DNMT3B mutations in Japanese patients with ICF syndrome. Am J Med Genet 112, 31–37.

    Article  PubMed  Google Scholar 

  • Simon, A.C., Zhou, J.C., Perera, R.L., van Deursen, F., Evrin, C., Ivanova, M.E., Kilkenny, M.L., Renault, L., Kjaer, S., Matak-Vinković, D., et al. (2014). A Ctf4 trimer couples the CMG helicase to DNA polymerase a in the eukaryotic replisome. Nature 510, 293–297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith, S., and Stillman, B. (1991). Stepwise assembly of chromatin during DNA replication in vitro. EMBO J 10, 971–980.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soares, L.M., He, P.C., Chun, Y., Suh, H., Kim, T.S., and Buratowski, S. (2017). Determinants of histone H3K4 methylation patterns. Mol Cell 68, 773–785.e6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sobel, R.E., Cook, R.G., Perry, C.A., Annunziato, A.T., and Allis, C.D. (1995). Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA 92, 1237–1241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sorida, M., Hirauchi, T., Ishizaki, H., Kaito, W., Shimada, A., Mori, C., Chikashige, Y., Hiraoka, Y., Suzuki, Y., Ohkawa, Y., et al. (2019). Regulation of ectopic heterochromatin-mediated epigenetic diversification by the JmjC family protein Epe1. PLoS Genet 15, e1008129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Statham, A.L., Robinson, M.D., Song, J.Z., Coolen, M.W., Stirzaker, C., and Clark, S.J. (2012). Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA. Genome Res 22, 1120–1127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stillman, B. (1986). Chromatin assembly during SV40 DNA replication in vitro. Cell 45, 555–565.

    Article  PubMed  CAS  Google Scholar 

  • Su, D., Hu, Q., Li, Q., Thompson, J.R., Cui, G., Fazly, A., Davies, B.A., Botuyan, M.V., Zhang, Z., and Mer, G. (2012). Structural basis for recognition of H3K56-acetylated histone H3–H4 by the chaperone Rtt106. Nature 483, 104–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, X.J., Wei, J., Wu, X.Y., Hu, M., Wang, L., Wang, H.H., Zhang, Q.H., Chen, S.J., Huang, Q.H., and Chen, Z. (2005). Identification and characterization of a novel human histone H3 lysine 36-specific methyltransferase. J Biol Chem 280, 35261–35271.

    Article  PubMed  CAS  Google Scholar 

  • Syeda, F., Fagan, R.L., Wean, M., Avvakumov, G.V., Walker, J.R., Xue, S., Dhe-Paganon, S., and Brenner, C. (2011). The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1. J Biol Chem 286, 15344–15351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sykaras, A.G., Pergaris, A., and Theocharis, S. (2021). Challenging, accurate and feasible: CAF-1 as a tumour proliferation marker of diagnostic and prognostic value. Cancers 13, 2575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tackett, A.J., Dilworth, D.J., Davey, M.J., O’Donnell, M., Aitchison, J.D., Rout, M.P., and Chait, B.T. (2005). Proteomic and genomic characterization of chromatin complexes at a boundary. J Cell Biol 169, 35–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tagami, H., Ray-Gallet, D., Almouzni, G., and Nakatani, Y. (2004). Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116, 51–61.

    Article  PubMed  CAS  Google Scholar 

  • Takeshita, K., Suetake, I., Yamashita, E., Suga, M., Narita, H., Nakagawa, A., and Tajima, S. (2011). Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1). Proc Natl Acad Sci USA 108, 9055–9059.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Talbert, P.B., and Henikoff, S. (2010). Histone variants — ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11, 264–275.

    Article  PubMed  CAS  Google Scholar 

  • Talbert, P.B., and Henikoff, S. (2021). The Yin and Yang of histone marks in transcription. Annu Rev Genom Hum Genet 22, 147–170.

    Article  Google Scholar 

  • Tamaru, H., and Selker, E.U. (2001). A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414, 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Tamaru, H., Zhang, X., McMillen, D., Singh, P.B., Nakayama, J., Grewal, S.I., Allis, C.D., Cheng, X., and Selker, E.U. (2003). Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat Genet 34, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Tan, B.C.M., Chien, C.T., Hirose, S., and Lee, S.C. (2006). Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication. EMBO J 25, 3975–3985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka, T., Knapp, D., and Nasmyth, K. (1997). Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90, 649–660.

    Article  PubMed  CAS  Google Scholar 

  • Tartof, K.D., Hobbs, C., and Jones, M. (1984). A structural basis for variegating position effects. Cell 37, 869–878.

    Article  PubMed  CAS  Google Scholar 

  • Tate, P.H., and Bird, A.P. (1993). Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3, 226–231.

    Article  PubMed  CAS  Google Scholar 

  • Thomassin, H., Flavin, M., Espinás, M.L., and Grange, T. (2001). Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J 20, 1974–1983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trewick, S.C., Minc, E., Antonelli, R., Urano, T., and Allshire, R.C. (2007). The JmjC domain protein Epe1 prevents unregulated assembly and disassembly of heterochromatin. EMBO J 26, 4670–4682.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsukada, Y.I., Fang, J., Erdjument-Bromage, H., Warren, M.E., Borchers, C.H., Tempst, P., and Zhang, Y. (2006). Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816.

    Article  PubMed  CAS  Google Scholar 

  • Tyler, J.K., Adams, C.R., Chen, S.R., Kobayashi, R., Kamakaka, R.T., and Kadonaga, J.T. (1999). The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402, 555–560.

    Article  PubMed  CAS  Google Scholar 

  • Tyler, J.K., Collins, K.A., Prasad-Sinha, J., Amiott, E., Bulger, M., Harte, P. J., Kobayashi, R., and Kadonaga, J.T. (2001). Interaction between the Drosophila CAF-1 and ASF1 Chromatin Assembly Factors. Mol Cell Biol 21, 6574–6584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • VanDemark, A.P., Blanksma, M., Ferris, E., Heroux, A., Hill, C.P., and Formosa, T. (2006). The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. Mol Cell 22, 363–374.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan, R.M., Dickson, B.M., Whelihan, M.F., Johnstone, A.L., Cornett, E.M., Cheek, M.A., Ausherman, C.A., Cowles, M.W., Sun, Z.W., and Rothbart, S.B. (2018). Chromatin structure and its chemical modifications regulate the ubiquitin ligase substrate selectivity of UHRF1. Proc Natl Acad Sci USA 115, 8775–8780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verdel, A., Jia, S., Gerber, S., Sugiyama, T., Gygi, S., Grewal, S.I.S., and Moazed, D. (2004). RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303, 672–676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verma, N., Pan, H., Doré, L.C., Shukla, A., Li, Q.V., Pelham-Webb, B., Teijeiro, V., González, F., Krivtsov, A., Chang, C.J., et al. (2018). TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nat Genet 50, 83–95.

    Article  PubMed  CAS  Google Scholar 

  • Verreault, A., Kaufman, P.D., Kobayashi, R., and Stillman, B. (1996). Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87, 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, J.A., Kwong, T.J., and Tsukiyama, T. (2008). ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat Struct Mol Biol 15, 477–484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volk, A., Liang, K., Suraneni, P., Li, X., Zhao, J., Bulic, M., Marshall, S., Pulakanti, K., Malinge, S., Taub, J., et al. (2018). A CHAF1B-dependent molecular switch in hematopoiesis and leukemia pathogenesis. Cancer Cell 34, 707–723.e7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volpe, T.A., Kidner, C., Hall, I.M., Teng, G., Grewal, S.I.S., and Martienssen, R.A. (2002). Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833–1837.

    Article  PubMed  CAS  Google Scholar 

  • Waddington, C.H. (1942). The epigenotype. Endeavour 1, 18–20.

    Google Scholar 

  • Wagner, E.J., and Carpenter, P.B. (2012). Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13, 115–126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, C., Zhu, B., and Xiong, J. (2018a). Recruitment and reinforcement: maintaining epigenetic silencing. Sci China Life Sci 61, 515–522.

    Article  PubMed  Google Scholar 

  • Wang, J., Reddy, B.D., and Jia, S. (2015). Rapid epigenetic adaptation to uncontrolled heterochromatin spreading. eLife 4, e06179.

    Article  PubMed Central  Google Scholar 

  • Wang, J., Tadeo, X., Hou, H., Tu, P.G., Thompson, J., Yates III, J.R., and Jia, S. (2013). Epe1 recruits BET family bromodomain protein Bdf2 to establish heterochromatin boundaries. Genes Dev 27, 1886–1902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, Q., Yu, G., Ming, X., Xia, W., Xu, X., Zhang, Y., Zhang, W., Li, Y., Huang, C., Xie, H., et al. (2020). Imprecise DNMT1 activity coupled with neighbor-guided correction enables robust yet flexible epigenetic inheritance. Nat Genet 52, 828–839.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T., Liu, Y., Edwards, G., Krzizike, D., Scherman, H., and Luger, K. (2018b). The histone chaperone FACT modulates nucleosome structure by tethering its components. Life Sci Alliance 1, e201800107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X., and Moazed, D. (2017). DNA sequence-dependent epigenetic inheritance of gene silencing and histone H3K9 methylation. Science 356, 88–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, X., Paulo, J.A., Li, X., Zhou, H., Yu, J., Gygi, S.P., and Moazed, D. (2021). A composite DNA element that functions as a maintainer required for epigenetic inheritance of heterochromatin. Mol Cell 81, 3979–3991.e4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weinberg, D.N., Papillon-Cavanagh, S., Chen, H., Yue, Y., Chen, X., Rajagopalan, K.N., Horth, C., McGuire, J.T., Xu, X., Nikbakht, H., et al. (2019). The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature 573, 281–286.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weinberg, D.N., Rosenbaum, P., Chen, X., Barrows, D., Horth, C., Marunde, M.R., Popova, I.K., Gillespie, Z.B., Keogh, M.C., Lu, C., et al. (2021). Two competing mechanisms of DNMT3A recruitment regulate the dynamics of de novo DNA methylation at PRC1-targeted CpG islands. Nat Genet 53, 794–800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams, K., Christensen, J., and Helin, K. (2012). DNA methylation: TET proteins—guardians of CpG islands? EMBO Rep 13, 28–35.

    Article  CAS  Google Scholar 

  • Wu, H., Zeng, H., Lam, R., Tempel, W., Amaya, M.F., Xu, C., Dombrovski, L., Qiu, W., Wang, Y., and Min, J. (2011). Structural and histone binding ability characterizations of human PWWP domains. PLoS ONE 6, e18919.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, C., and Corces, V.G. (2018). Nascent DNA methylome mapping reveals inheritance of hemimethylation at CTCF/cohesin sites. Science 359, 1166–1170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, M., Long, C., Chen, X., Huang, C., Chen, S., and Zhu, B. (2010). Partitioning of histone H3–H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94–98.

    Article  PubMed  CAS  Google Scholar 

  • Xu, M., Wang, W., Chen, S., and Zhu, B. (2011). A model for mitotic inheritance of histone lysine methylation. EMBO Rep 13, 60–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi, L., Nishiyama, A., Misaki, T., Johmura, Y., Ueda, J., Arita, K., Nagao, K., Obuse, C., and Nakanishi, M. (2017). Usp7-dependent histone H3 deubiquitylation regulates maintenance of DNA methylation. Sci Rep 7, 55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Zhang, X., Feng, J., Leng, H., Li, S., Xiao, J., Liu, S., Xu, Z., Xu, J., Li, D., et al. (2016). The histone chaperone fact contributes to DNA replication-coupled nucleosome assembly. Cell Rep 16, 3414.

    Article  PubMed  CAS  Google Scholar 

  • Yarychkivska, O., Shahabuddin, Z., Comfort, N., Boulard, M., and Bestor, T.H. (2018). BAH domains and a histone-like motif in DNA methyltransferase 1 (DNMT1) regulate de novo and maintenance methylation in vivo. J Biol Chem 293, 19466–19475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Youmans, D.T., Schmidt, J.C., and Cech, T.R. (2018). Live-cell imaging reveals the dynamics of PRC2 and recruitment to chromatin by SUZ12-associated subunits. Genes Dev 32, 794–805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, C., Gan, H., Serra-Cardona, A., Zhang, L., Gan, S., Sharma, S., Johansson, E., Chabes, A., Xu, R.M., and Zhang, Z. (2018a). A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361, 1386–1389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, M., and Ren, B. (2017). The three-dimensional organization of mammalian genomes. Annu Rev Cell Dev Biol 33, 265–289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu, R., Wang, X., and Moazed, D. (2018b). Epigenetic inheritance mediated by coupling of RNAi and histone H3K9 methylation. Nature 558, 615–619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan, W., Xu, M., Huang, C., Liu, N., Chen, S., and Zhu, B. (2011). H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J Biol Chem 286, 7983–7989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaratiegui, M., Irvine, D.V., and Martienssen, R.A. (2007). Noncoding RNAs and gene silencing. Cell 128, 763–776.

    Article  PubMed  CAS  Google Scholar 

  • Zee, B.M., Levin, R.S., DiMaggio, P.A., and Garcia, B.A. (2010). Global turnover of histone post-translational modifications and variants in human cells. Epigenet Chromatin 3, 22.

    Article  CAS  Google Scholar 

  • Zhang, B., Zheng, H., Huang, B., Li, W., Xiang, Y., Peng, X., Ming, J., Wu, X., Zhang, Y., Xu, Q., et al. (2016). Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 537, 553–557.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Gao, Q., Tan, S., You, J., Lyu, C., Zhang, Y., Han, M., Chen, Z., Li, J., Wang, H., et al. (2019). SET8 prevents excessive DNA methylation by methylation-mediated degradation of UHRF1 and DNMT1. Nucleic Acids Res, doi: https://doi.org/10.1093/nar/gkz626.

  • Zhang, H., Han, J., Kang, B., Burgess, R., and Zhang, Z. (2012). Human histone acetyltransferase 1 protein preferentially acetylates H4 histone molecules in H3.1-H4 over H3.3-H4. J Biol Chem 287, 6573–6581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, K., Mosch, K., Fischle, W., and Grewal, S.I.S. (2008). Roles of the Clr4 methyltransferase complex in nucleation, spreading and maintenance of heterochromatin. Nat Struct Mol Biol 15, 381–388.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Serra-Cardona, A., Zhou, H., Wang, M., Yang, N., Zhang, Z., and Xu, R.M. (2018). Multisite substrate recognition in Asf1-dependent acetylation of histone H3 K56 by Rtt109. Cell 174, 818–830.e11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Y., Jurkowska, R., Soeroes, S., Rajavelu, A., Dhayalan, A., Bock, I., Rathert, P., Brandt, O., Reinhardt, R., Fischle, W., et al. (2010). Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucl Acids Res 38, 4246–4253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, Z., Shibahara, K., and Stillman, B. (2000). PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408, 221–225.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J., Wang, M., Chang, L., Yu, J., Song, A., Liu, C., Huang, W., Zhang, T., Wu, X., Shen, X., et al. (2020a). RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propagation of H2AK119ub1 during cell division. Nat Cell Biol 22, 439–452.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Q., Zhang, J., Chen, R., Wang, L., Li, B., Cheng, H., Duan, X., Zhu, H., Wei, W., Li, J., et al. (2016). Dissecting the precise role of H3K9 methylation in crosstalk with DNA maintenance methylation in mammals. Nat Commun 7, 12464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, Y., and Garcia, B.A. (2015). Comprehensive catalog of currently documented histone modifications. Cold Spring Harb Perspect Biol 7, a025064.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, Z., Lan, M., Li, J., Dong, Q., Li, X., Liu, B., Li, G., Wang, H., Zhang, Z., and Zhu, B. (2019). The proinflammatory cytokine TNFα induces DNA demethylation-dependent and -independent activation of interleukin-32 expression. J Biol Chem 294, 6785–6795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao, Z., Zhang, Z., Li, J., Dong, Q., Xiong, J., Li, Y., Lan, M., Li, G., and Zhu, B. (2020b). Sustained TNF-α stimulation leads to transcriptional memory that greatly enhances signal sensitivity and robustness. eLife 9, e61965.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, H., Madden, B.J., Muddiman, D.C., and Zhang, Z. (2006). Chromatin assembly factor 1 interacts with histone H3 methylated at lysine 79 in the processes of epigenetic silencing and DNA repair. Biochemistry 45, 2852–2861.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, K., Gaullier, G., and Luger, K. (2019). Nucleosome structure and dynamics are coming of age. Nat Struct Mol Biol 26, 3–13.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, B., and Reinberg, D. (2011). Epigenetic inheritance: uncontested? Cell Res 21, 435–441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziller, M.J., Gu, H., Müller, F., Donaghey, J., Tsai, L.T.Y., Kohlbacher, O., De Jager, P.L., Rosen, E.D., Bennett, D.A., Bernstein, B.E., et al. (2013). Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31725015, 31830048 to Q.L. and 32000417 to W.D.), the Beijing Outstanding Young Scientist Program (BJJWZYJH01201910001005 to Q.L.), the National Key Research and Development Project of China (2019YFA0508903 to Q.L.), the China Postdoctoral Science Foundation (2020M670487 to W. D.), the Chinese Academy of Sciences (XDB 37010100 and QYZDY-SSW-SMC031 to B.Z.), the K. C. Wong educational foundation (GJTD-2020-06 to B.Z.) and the National Institutes of Health (R35 GM126910 to S.J. and R35 GM115018 to Z.Z.). We apologize that we could not cite all references because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Zhu, Songtao Jia, Qing Li or Zhiguo Zhang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, W., Shi, G., Shan, CM. et al. Mechanisms of chromatin-based epigenetic inheritance. Sci. China Life Sci. 65, 2162–2190 (2022). https://doi.org/10.1007/s11427-022-2120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-022-2120-1

Keywords

Navigation