Skip to main content
Log in

High-quality genome assembly of Huazhan and Tianfeng, the parents of an elite rice hybrid Tian-you-hua-zhan

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

High-quality rice reference genomes have accelerated the comprehensive identification of genome-wide variations and research on functional genomics and breeding. Tian-you-hua-zhan has been a leading hybrid in China over the past decade. Here, de novo genome assembly strategy optimization for the rice indica lines Huazhan (HZ) and Tianfeng (TF), including sequencing platforms, assembly pipelines and sequence depth, was carried out. The PacBio and Nanopore platforms for long-read sequencing were utilized, with the Canu, wtdbg2, SMARTdenovo, Flye, Canu-wtdbg2, Canu-SMARTdenovo and Canu-Flye assemblers. The combination of PacBio and Canu was optimal, considering the contig N50 length, contig number, assembled genome size and polishing process. The assembled contigs were scaffolded with Hi-C data, resulting in two “golden quality” rice reference genomes, and evaluated using the scaffold N50, BUSCO, and LTR assembly index. Furthermore, 42,625 and 41,815 non-transposable element genes were annotated for HZ and TF, respectively. Based on our assembly of HZ and TF, as well as Zhenshan97, Minghui63, Shuhui498 and 9311, comprehensive variations were identified using Nipponbare as a reference. The de novo assembly strategy for rice we optimized and the “golden quality” rice genomes we produced for HZ and TF will benefit rice genomics and breeding research, especially with respect to uncovering the genomic basis of the elite traits of HZ and TF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonge, M., Wang, X., Benoit, M., Soyk, S., Pereira, L., Zhang, L., Suresh, H., Ramakrishnan, S., Maumus, F., Ciren, D., et al. (2020). Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182, 145–161.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amarasinghe, S.L., Su, S., Dong, X., Zappia, L., Ritchie, M.E., and Gouil, Q. (2020). Opportunities and challenges in long-read sequencing data analysis. Genome Biol 21, 30–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Belser, C., Istace, B., Denis, E., Dubarry, M., Baurens, F.C., Falentin, C., Genete, M., Berrabah, W., Chèvre, A.M., Delourme, R., et al. (2018). Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nat Plants 4, 879–887.

    Article  CAS  PubMed  Google Scholar 

  • Burton, J.N., Adey, A., Patwardhan, R.P., Qiu, R., Kitzman, J.O., and Shendure, J. (2013). Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol 31, 1119–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, M.S., Law, M.Y., Holt, C., Stein, J.C., Moghe, G.D., Hufnagel, D.E., Lei, J., Achawanantakun, R., Jiao, D., Lawrence, C.J., et al. (2014). MAKER-P: A tool kit for the rapid creation, management, and quality control of plant genome annotations. Plant Physiol 164, 513–524.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Pan, J., Cheng, J., Jiang, G., Jin, Y., Gu, Z., Qian, Q., Zhai, W., and Ma, B. (2009). Fine genetic mapping and physical delimitation of the lesion mimic gene spotted leaf 5 (spl5) in rice (Oryza sativa L.). Mol Breeding 24, 387–395.

    Article  CAS  Google Scholar 

  • Chen, X., Lu, Q., Liu, H., Zhang, J., Hong, Y., Lan, H., Li, H., Wang, J., Liu, H., Li, S., et al. (2019). Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant 12, 920–934.

    Article  CAS  PubMed  Google Scholar 

  • Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X., and Ruden, D.M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cretu Stancu, M., van Roosmalen, M.J., Renkens, I., Nieboer, M.M., Middelkamp, S., de Ligt, J., Pregno, G., Giachino, D., Mandrile, G., Espejo Valle-Inclan, J., et al. (2017). Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat Commun 8, 1326–1338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. Science 295, 1306–1311.

    Article  CAS  PubMed  Google Scholar 

  • Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., Wang, X., Qin, P., Yang, Y., Zhang, G., et al. (2017). Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 355, 962–965.

    Article  CAS  PubMed  Google Scholar 

  • Du, B., Zhang, W., Liu, B., Hu, J., Wei, Z., Shi, Z., He, R., Zhu, L., Chen, R., Han, B., et al. (2009). Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proc Natl Acad Sci USA 106, 22163–22168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, H., Yu, Y., Ma, Y., Gao, Q., Cao, Y., Chen, Z., Ma, B., Qi, M., Li, Y., Zhao, X., et al. (2017). Sequencing and de novo assembly of a near complete indica rice genome. Nat Commun 8, 15324–15335.

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan, P., Xu, J., Zeng, D., Zhang, B., Geng, M., Zhang, G., Huang, K., Huang, L., Xu, R., Ge, S., et al. (2017). Natural variation in the promoter of GSE5 contributes to grain size diversity in rice. Mol Plant 10, 685–694.

    Article  CAS  PubMed  Google Scholar 

  • Durand, N.C., Robinson, J.T., Shamim, M.S., Machol, I., Mesirov, J.P., Lander, E.S., and Aiden, E.L. (2016). Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst 3, 99–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn, R.D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R.Y., Eddy, S. R., Heger, A., Hetherington, K., Holm, L., Mistry, J., et al. (2014). Pfam: the protein families database. Nucl Acids Res 42, D222–D230.

    Article  CAS  PubMed  Google Scholar 

  • Friedman, E.J., Wang, H.X., Jiang, K., Perovic, I., Deshpande, A., Pochapsky, T.C., Temple, B.R.S., Hicks, S.N., Harden, T.K., and Jones, A.M. (2011). Acireductone dioxygenase 1 (ARD1) is an effector of the heterotrimeric G protein β subunit in Arabidopsis. J Biol Chem 286, 30107–30118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuentes, R.R., Chebotarov, D., Duitama, J., Smith, S., De la Hoz, J.F., Mohiyuddin, M., Wing, R.A., McNally, K.L., Tatarinova, T., Grigoriev, A., et al. (2019). Structural variants in 3000 rice genomes. Genome Res 29, 870–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuta, Y., and Yagi, T. (1998). Mapping of a shattering resistance gene in a mutant line SR-5 induced from an indica rice variety, Nan-jing11. Breeding Sci 48, 345–348.

    CAS  Google Scholar 

  • Goel, M., Sun, H., Jiao, W.B., and Schneeberger, K. (2019). SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol 20, 277–289.

    Article  PubMed  PubMed Central  Google Scholar 

  • Golicz, A.A., Batley, J., and Edwards, D. (2016). Towards plant pangenomics. Plant Biotechnol J 14, 1099–1105.

    Article  PubMed  Google Scholar 

  • Haas, B.J., Delcher, A.L., Mount, S.M., Wortman, J.R., Smith, R.K., Hannick, L.I., Maiti, R., Ronning, C.M., Rusch, D.B., Town, C.D., etal. (2003). Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res 31, 5654–5666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas, B.J., Salzberg, S.L., Zhu, W., Pertea, M., Allen, J.E., Orvis, J., White, O., Buell, C.R., and Wortman, J.R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol 9, R7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashi, K., Yasuda, N., Fujita, Y., Koizumi, S., and Yoshida, H. (2010). Identification of the blast resistance gene Pit in rice cultivars using functional markers. Theor Appl Genet 121, 1357–1367.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Lu, T., and Han, B. (2013). Resequencing rice genomes: an emerging new era of rice genomics. Trends Genets 29, 225–232.

    Article  Google Scholar 

  • Jain, M., Fiddes, L., Miga, K., Olsen, H., Paten, B., and Akeson, M. (2015). Improved data analysis for the MinION nanopore sequencer. Nat Methods 12, 351–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao, W.B., and Schneeberger, K. (2020). Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. Nat Commun 11, 989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., Ouyang, S., Schwartz, D.C., Tanaka, T., Wu, J., Zhou, S., et al. (2013). Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6, 4–13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawashima, C.G., Guimarães, G.A., Nogueira, S.R., MacLean, D., Cook, D.R., Steuernagel, B., Baek, J., Bouyioukos, C., Melo, B.V.A., Tristão, G., et al. (2016). A pigeonpea gene confers resistance to Asian soybean rust in soybean. Nat Biotechnol 34, 661–665.

    Article  CAS  PubMed  Google Scholar 

  • Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P.A. (2019). Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol 37, 540–546.

    Article  CAS  PubMed  Google Scholar 

  • Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., and Phillippy, A.M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27, 722–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korf, I. (2004). Gene finding in novel genomes. BMC Bioinf 5, 59–67.

    Article  Google Scholar 

  • Korlach, J. (2015). Understanding accuracy in SMRT® sequencing. Available from: URL: https://www.pacb.com/wp-content/uploads/2015/09/Perspective_UnderstandingAccuracySMRTSequencing1.pdf.

  • Kou, Y., Liao, Y., Toivainen, T., Lv, Y., Tian, X., Emerson, J.J., Gaut, B.S., and Zhou, Y. (2020). Evolutionary genomics of structural variation in Asian rice (Oryza sativa) domestication. Mol Biol Evol 37, 3507–3524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 1303.3997.

  • Liu, H., Wu, S., Li, A. and Ruan, J. (2020a). SMARTdenovo: A de novo assembler using long noisy reads. Preprints, doi: https://doi.org/10.20944/pre-prints202009.0207.v1.

  • Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.A., Zhang, H., Liu, Z., Shi, M., et al. (2020b). Pan-genome of wild and cultivated soybeans. Cell 182, 162–176.e13.

    Article  CAS  PubMed  Google Scholar 

  • Marçais, G., and Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marçais, G., Delcher, A.L., Phillippy, A.M., Coston, R., Salzberg, S.L., and Zimin, A. (2018). MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol 14, e1005944.

    Article  PubMed  PubMed Central  Google Scholar 

  • Michael, T.P., Jupe, F., Bemm, F., Motley, S.T., Sandoval, J.P., Lanz, C., Loudet, O., Weigel, D., and Ecker, J.R. (2018). High contiguity Arabidopsis thaliana genome assembly with a single nanopore flow cell. Nat Commun 9, 541–548.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray, M.G., and Thompson, W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8, 4321–4326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrocki, E.P., and Eddy, S.R. (2013). Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ou, S., Chen, J., and Jiang, N. (2018). Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Res 46, e126.

    PubMed  PubMed Central  Google Scholar 

  • Partners, N.G.D.C.M. (2020). Database resources of the national genomics data center in 2020. Nucleic Acids Res 48, D24–D33.

    Google Scholar 

  • Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., and Salzberg, S.L. (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33, 290–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan, J., and Li, H. (2020). Fast and accurate long-read assembly with wtdbg2. Nat Methods 17, 155–158.

    Article  CAS  PubMed  Google Scholar 

  • Schattner, P., Brooks, A.N., and Lowe, T.M. (2005). The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33, W686–W689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Servant, N., Varoquaux, N., Lajoie, B.R., Viara, E., Chen, C.J., Vert, J.P., Heard, E., Dekker, J., and Barillot, E. (2015). HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16, 259–269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen, R., Wang, L., Liu, X., Wu, J., Jin, W., Zhao, X., Xie, X., Zhu, Q., Tang, H., Li, Q., et al. (2017). Genomic structural variation-mediated allelic suppression causes hybrid male sterility in rice. Nat Commun 8, 1310–1319.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V., and Zdobnov, E.M. (2015). BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212.

    Article  PubMed  Google Scholar 

  • Stanke, M., Diekhans, M., Baertsch, R., and Haussler, D. (2008). Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644.

    Article  CAS  PubMed  Google Scholar 

  • Stein, J.C., Yu, Y., Copetti, D., Zwickl, D.J., Zhang, L., Zhang, C., Chougule, K., Gao, D., Iwata, A., Goicoechea, J.L., et al. (2018). Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat Genet 50, 285–296.

    Article  CAS  PubMed  Google Scholar 

  • Tang, H., Zhang, X., Miao, C., Zhang, J., Ming, R., Schnable, J.C., Schnable, P.S., Lyons, E., and Lu, J. (2015). ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol 16, 3–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao, Y., Zhao, X., Mace, E., Henry, R., and Jordan, D. (2019). Exploring and exploiting pan-genomics for crop Improvement. Mol Plant 12, 156–169.

    Article  CAS  PubMed  Google Scholar 

  • Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E.S., Fischer, A., Bock, R., and Greiner, S. (2017). GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45, W6–W11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaser, R., Sović, I., Nagarajan, N., and Šikić, M. (2017). Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res 27, 737–746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker, B.J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q., Wortman, J., Young, S.K., et al. (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Mauleon, R., Hu, Z., Chebotarov, D., Tai, S., Wu, Z., Li, M., Zheng, T., Fuentes, R.R., Zhang, F., et al. (2018). Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Xiong, G., Hu, J., Jiang, L., Yu, H., Xu, J., Fang, Y., Zeng, L., Xu, E., Xu, J., et al. (2015). Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47, 944–948.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Shang, L., Yu, H., Zeng, L., Hu, J., Ni, S., Rao, Y., Li, S., Chu, J., Meng, X., et al. (2020). A strigolactone biosynthesis gene contributed to the green revolution in rice. Mol Plant 13, 923–932.

    Article  PubMed  Google Scholar 

  • Witek, K., Jupe, F., Witek, A.I., Baker, D., Clark, M.D., and Jones, J.D.G. (2016). Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nat Biotechnol 34, 656–660.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, Y., Li, J., Yu, J., Meng, Q., Deng, X., Yi, Z., and Xiao, G. (2016). Improvement of bacterial blight and brown planthopper resistance in an elite restorer line Huazhan of Oryza. Field Crops Res 186, 47–57.

    Article  Google Scholar 

  • Xie, X., Du, H., Tang, H., Tang, J., Tan, X., Liu, W., Li, T., Lin, Z., Liang, C., and Liu, Y.G. (2021). A chromosome-level genome assembly of the wild rice Oryza rufipogon facilitates tracing the origins of Asian cultivated rice. Sci China Life Sci 64, 282–293.

    Article  CAS  PubMed  Google Scholar 

  • Yao, W., Li, G., Yu, Y., and Ouyang, Y. (2018). funRiceGenes dataset for comprehensive understanding and application of rice functional genes. Gigascience 7, 1–9.

    Article  PubMed  Google Scholar 

  • Zeng, D., Liu, T., Ma, X., Wang, B., Zheng, Z., Zhang, Y., Xie, X., Yang, B., Zhao, Z., Zhu, Q., et al. (2020). Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5’UTR-intron editing improves grain quality in rice. Plant Biotechnol J 18, 2385–2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Chen, L.L., Xing, F., Kudrna, D.A., Yao, W., Copetti, D., Mu, T., Li, W., Song, J.M., Xie, W., et al. (2016). Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Proc Natl Acad Sci USA 113, E5163–E5171.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Q., Liang, Z., Cui, X., Ji, C., Li, Y., Zhang, P., Liu, J., Riaz, A., Yao, P., Liu, M., et al. (2018). N6-methyladenine DNA methylation in japonica and indica rice genomes and its association with gene expression, plant development, and stress responses. Mol Plant 11, 1492–1508.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Q., Feng, Q., Lu, H., Li, Y., Wang, A., Tian, Q., Zhan, Q., Lu, Y., Zhang, L., Huang, T., et al. (2018). Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50, 278–284.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, S., Zhang, C., Mu, J., Zhang, H., Yao, W., Ding, X., Ding, J., and Chang, Y. (2020). All-in-one sequencing: an improved library preparation method for cost-effective and high-throughput next-generation sequencing. Plant Methods 16, 74–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Chebotarov, D., Kudrna, D., Llaca, V., Lee, S., Rajasekar, S., Mohammed, N., Al-Bader, N., Sobel-Sorenson, C., Parakkal, P., et al. (2020). A platinum standard pan-genome resource that represents the population structure of Asian rice. Sci Data 7, 113–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, H.Y., Wang, S., Zhang, Y., Lin, H., Lu, M., Wu, X.M., Li, S.F., Zhu, X.D., Rao, Y.C., and Wang, Y.X. (2020). QTL excavation and analysis of candidate genes in contents of As, Cu, Fe, Hg and Zn in rice grain (in Chinese). Sci Sin Vitae 50, 623–632.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agricultural Science and Technology Innovation Program, the Elite Young Scientists Program of CAAS, the Science Technology and Innovation Committee of Shenzhen Municipality (KQJSCX20180323140312935, AGIS-ZDKY202004) and the Dapeng New District Special Fund for Industrial Development (KY20150113).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guosheng Xiong or Yuxiao Chang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Wang, Y., Deng, C. et al. High-quality genome assembly of Huazhan and Tianfeng, the parents of an elite rice hybrid Tian-you-hua-zhan. Sci. China Life Sci. 65, 398–411 (2022). https://doi.org/10.1007/s11427-020-1940-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-020-1940-9

Keywords

Navigation