Abstract
Evidence is emerging that tRNA-derived fragments (tRFs) are regulatory molecules. Studies of tRFs in plants have been based on conventional small RNA sequencing, and focused on profiling of tRF-5 and tRF-3 species. A more comprehensive and quantitative analysis of the entire tRF population is highly necessary. Here, we employ tRNA-seq and YAMAT-seq, and develop a bioinformatics tool to comprehensively profile the expressions of tRNAs and tRFs in plants. We show that in Arabidopsis, approximately half of tRNA genes are extremely weakly expressed, accounting for only 1% of total tRNA abundance, while ~12% of tRNA genes contribute to ~80% of tRNA abundance. Our tRNA sequencings in various plants reveal that tRNA expression profiles exhibit a cross-species conserved pattern. By characterizing the composition of a highly heterogeneous tRF population, we show that tRNA halves and previously unnoticed 10–16-nt tiny tRFs represent substantial portions. The highly accumulated 13-nt and 16-nt tiny tRFs in Arabidopsis indicate that tiny tRFs are not random tRNA degradation products. Finally, we provide a user-friendly database for displaying the dynamic spatiotemporal expressions of tRNAs and tRFs in the model plants Arabidopsis and rice.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alves, C.S., Vicentini, R., Duarte, G.T., Pinoti, V.F., Vincentz, M., and Nogueira, F.T.S. (2017). Genome-wide identification and characterization of tRNA-derived RNA fragments in land plants. Plant Mol Biol 93, 35–48.
Balatti, V., Nigita, G., Veneziano, D., Drusco, A., Stein, G.S., Messier, T.L., Farina, N.H., Lian, J.B., Tomasello, L., Liu, C.G., et al. (2017). tsRNA signatures in cancer. Proc Natl Acad Sci USA 114, 8071–8076.
Baldrich, P., Rutter, B.D., Karimi, H.Z., Podicheti, R., Meyers, B.C., and Innes, R.W. (2019). Plant extracellular vesicles contain diverse small RNA species and are enriched in 10- to 17-nucleotide “tiny” RNAs. Plant Cell 31, 315–324.
Bernstein, E., Caudy, A.A., Hammond, S.M., and Hannon, G.J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.
Canella, D., Bernasconi, D., Gilardi, F., LeMartelot, G., Migliavacca, E., Praz, V., Cousin, P., Delorenzi, M., Hernandez, N., Hernandez, N., et al. (2012). A multiplicity of factors contributes to selective RNA polymerase III occupancy of a subset of RNA polymerase III genes in mouse liver. Genome Res 22, 666–680.
Chen, K., Guo, T., Li, X.M., Zhang, Y.M., Yang, Y.B., Ye, W.W., Dong, N. Q., Shi, C.L., Kan, Y., Xiang, Y.H., et al. (2019). Translational regulation of plant response to high temperature by a dual-function tRNAHis guanylyltransferase in rice. Mol Plant 12, 1123–1142.
Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., Feng, G., Peng, H., Zhang, X., Zhang, Y., et al. (2016). Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351, 397–400.
Cognat, V., Pawlak, G., Duchêne, A.M., Daujat, M., Gigant, A., Salinas, T., Michaud, M., Gutmann, B., Giegé, P., Gobert, A., et al. (2013). PlantRNA, a database for tRNAs of photosynthetic eukaryotes. Nucleic Acids Res 41, D273–D279.
Cognat, V., Morelle, G., Megel, C., Lalande, S., Molinier, J., Vincent, T., Small, I., Duchêne, A.M., and Maréchal-Drouard, L. (2017). The nuclear and organellar tRNA-derived RNA fragment population in Arabidopsis thaliana is highly dynamic. Nucleic Acids Res 45, 3460–3472.
Cole, C., Sobala, A., Lu, C., Thatcher, S.R., Bowman, A., Brown, J.W.S., Green, P.J., Barton, G.J., and Hutvagner, G. (2009). Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15, 2147–2160.
Cozen, A.E., Quartley, E., Holmes, A.D., Hrabeta-Robinson, E., Phizicky, E.M., and Lowe, T.M. (2015). ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat Methods 12, 879–884.
Fricker, R., Brogli, R., Luidalepp, H., Wyss, L., Fasnacht, M., Joss, O., Zywicki, M., Helm, M., Schneider, A., Cristodero, M., et al. (2019). A tRNA half modulates translation as stress response in Trypanosoma brucei. Nat Commun 10, 118.
Fu, H., Feng, J., Liu, Q., Sun, F., Tie, Y., Zhu, J., Xing, R., Sun, Z., and Zheng, X. (2009). Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 583, 437–442.
Gogakos, T., Brown, M., Garzia, A., Meyer, C., Hafner, M., and Tuschl, T. (2017). Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP. Cell Rep 20, 1463–1475.
Goodarzi, H., Liu, X., Nguyen, H.C.B., Zhang, S., Fish, L., and Tavazoie, S.F. (2015). Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 161, 790–802.
Gupta, N., Singh, A., Zahra, S., and Kumar, S. (2018). PtRFdb: a database for plant transfer RNA-derived fragments. Database 2018.
Hashimoto, T., de Hoon, M.J.L., Grimmond, S.M., Daub, C.O., Hayashizaki, Y., and Faulkner, G.J. (2009). Probabilistic resolution of multi-mapping reads in massively parallel sequencing data using MuMRescueLite. Bioinformatics 25, 2613–2614.
Hoffmann, A., Fallmann, J., Vilardo, E., Mörl, M., Stadler, P.F., and Amman, F. (2018). Accurate mapping of tRNA reads. Bioinformatics 34, 1116–1124.
Holley, R.W., Apgar, J., Everett, G.A., Madison, J.T., Marquisee, M., Merrill, S.H., Penswick, J.R., and Zamir, A. (1965). Structure of a ribonucleic acid. Science 147, 1462–1465.
Honda, S., Loher, P., Shigematsu, M., Palazzo, J.P., Suzuki, R., Imoto, I., Rigoutsos, I., and Kirino, Y. (2015). Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc Natl Acad Sci USA 112, E3816–E3825.
Honda, S., Morichika, K., and Kirino, Y. (2016). Selective amplification and sequencing of cyclic phosphate-containing RNAs by the cP-RNA-seq method. Nat Protoc 11, 476–489.
Huang, W., Li, L., Myers, J.R., and Marth, G.T. (2012). ART: a next-generation sequencing read simulator. Bioinformatics 28, 593–594.
Jin, Y., Tam, O.H., Paniagua, E., and Hammell, M. (2015). TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics 31, 3593–3599.
Johnson, N.R., Yeoh, J.M., Coruh, C., and Axtell, M.J. (2016). Improved placement of multi-mapping small RNAs. G3-Genes Genom Genet 6, 2103–2111.
Kim, H.K., Fuchs, G., Wang, S., Wei, W., Zhang, Y., Park, H., RoyChaudhuri, B., Li, P., Xu, J., Chu, K., et al. (2017). A transfer-RNA-derived small RNA regulates ribosome biogenesis. Nature 552, 57–62.
Kim, S.H., Suddath, F.L., Quigley, G.J., McPherson, A., Sussman, J.L., Wang, A.H.J., Seeman, N.C., and Rich, A. (1974). Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185, 435–440.
Kirchner, S., and Ignatova, Z. (2015). Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 16, 98–112.
Kumar, P., Anaya, J., Mudunuri, S.B., and Dutta, A. (2014). Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets. BMC Biol 12, 78.
Kumar, P., Kuscu, C., and Dutta, A. (2016). Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci 41, 679–689.
Lalande, S., Merret, R., Salinas-Giegé, T., and Drouard, L. (2020). Arabidopsis tRNA-derived fragments as potential modulators of translation. RNA Biol 17, 1137–1148.
Lee, Y.S., Shibata, Y., Malhotra, A., and Dutta, A. (2009). A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23, 2639–2649.
Li, Z., Ender, C., Meister, G., Moore, P.S., Chang, Y., and John, B. (2012). Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Res 40, 6787–6799.
Lowe, T.M., and Chan, P.P. (2016). tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44, W54–W57.
MacIntosh, G.C. (2011). RNase T2 family: enzymatic properties, functional diversity, and evolution of ancient ribonucleases. In: Nicholson, A., eds. Ribonucleases. Nucleic Acids and Molecular Biology. Berlin: Springer. 89–114.
Martinez, G., Choudury, S.G., and Slotkin, R.K. (2017). tRNA-derived small RNAs target transposable element transcripts. Nucleic Acids Res 45, 5142–5152.
Maute, R.L., Schneider, C., Sumazin, P., Holmes, A., Califano, A., Basso, K., and Dalla-Favera, R. (2013). tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci USA 110, 1404–1409.
Megel, C., Hummel, G., Lalande, S., Ubrig, E., Cognat, V., Morelle, G., Salinas-Giegé, T., Duchêne, A.M., and Maréchal-Drouard, L. (2019). Plant RNases T2, but not Dicer-like proteins, are major players of tRNA-derived fragments biogenesis. Nucleic Acids Res 47, 941–952.
Michaud, M., Cognat, V., Duchêne, A.M., and Maréchal-Drouard, L. (2011). A global picture of tRNA genes in plant genomes. Plant J 66, 80–93.
Moras, D., Comarmond, M.B., Fischer, J., Weiss, R., Thierry, J.C., Ebel, J. P., and Giegé, R. (1980). Crystal structure of yeast tRNAAsp. Nature 288, 669–674.
Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5, 621–628.
Pan, T. (2018). Modifications and functional genomics of human transfer RNA. Cell Res 28, 395–404.
Raina, M., and Ibba, M. (2014). tRNAs as regulators of biological processes. Front Genet 5.
Rak, R., Dahan, O., and Pilpel, Y. (2018). Repertoires of tRNAs: the couplers of genomics and proteomics. Annu Rev Cell Dev Biol 34, 239–264.
Ramírez, V., González, B., López, A., Castelló, M.J., Gil, M.J., Zheng, B., Chen, P., and Vera, P. (2018). A 2′-O-methyltransferase responsible for transfer RNA anticodon modification is pivotal for resistance to Pseudomonas syringae DC3000 in Arabidopsis. Mol Plant Microbe Interact 31, 1323–1336.
Ren, B., Wang, X., Duan, J., and Ma, J. (2019). Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 365, 919–922.
Rio, D.C. (2014). Northern blots for small RNAs and microRNAs. Cold Spring Harbor Protocols 2014(7), pdb.prot080838.
Robertus, J.D., Ladner, J.E., Finch, J.T., Rhodes, D., Brown, R.S., Clark, B. F.C., and Klug, A. (1974). Structure of yeast phenylalanine tRNA at 3 Å resolution. Nature 250, 546–551.
Robinson, M.D., McCarthy, D.J., and Smyth, G.K. (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.
Rodnina, M.V. (2018). Translation in prokaryotes. Cold Spring Harb Perspect Biol 10, a032664.
Ryvkin, P., Leung, Y.Y., Silverman, I.M., Childress, M., Valladares, O., Dragomir, I., Gregory, B.D., and Wang, L.S. (2013). HAMR: high-throughput annotation of modified ribonucleotides. RNA 19, 1684–1692.
Saikia, M., Jobava, R., Parisien, M., Putnam, A., Krokowski, D., Gao, X. H., Guan, B.J., Yuan, Y., Jankowsky, E., Feng, Z., et al. (2014). Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress. Mol Cell Biol 34, 2450–2463.
Schorn, A.J., Gutbrod, M.J., LeBlanc, C., and Martienssen, R. (2017). LTR-retrotransposon control by tRNA-derived small RNAs. Cell 170, 61–71.e11.
Selitsky, S.R., and Sethupathy, P. (2015). tDRmapper: challenges and solutions to mapping, naming, and quantifying tRNA-derived RNAs from human small RNA-sequencing data. BMC BioInf 16, 354.
Sharma, U., Conine, C.C., Shea, J.M., Boskovic, A., Derr, A.G., Bing, X. Y., Belleannee, C., Kucukural, A., Serra, R.W., Sun, F., et al. (2016). Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351, 391–396.
Shi, J., Ko, E.A., Sanders, K.M., Chen, Q., and Zhou, T. (2018). SPORTS1.0: A tool for annotating and profiling non-coding RNAs optimized for rRNA- and tRNA-derived small RNAs. Genomics Proteomics Bioinf 16, 144–151.
Shi, J., Zhang, Y., Zhou, T., and Chen, Q. (2019). tsRNAs: The Swiss army knife for translational regulation Trends Biochem Sci 44, 185–189
Shigematsu, M., Honda, S., and Kirino, Y. (2014). Transfer RNA as a source of small functional RNA. J Mol Biol Mol Imaging 1, 8.
Shigematsu, M., Honda, S., Loher, P., Telonis, A.G., Rigoutsos, I., and Kirino, Y. (2017). YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs. Nucleic Acids Res 45.
Tarazona, S., Furió-Tarí, P., Turrà, D., Pietro, A.D., Nueda, M.J., Ferrer, A., and Conesa, A. (2015). Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res 43, gkv711.
Tarazona, S., García-Alcalde, F., Dopazo, J., Ferrer, A., and Conesa, A. (2011). Differential expression in RNA-seq: a matter of depth. Genome Res 21, 2213–2223.
Telonis, A.G., Loher, P., Kirino, Y., and Rigoutsos, I. (2016). Consequential considerations when mapping tRNA fragments BMC Bioinf 17, 123.
Thompson, A., Zielezinski, A., Plewka, P., Szymanski, M., Nuc, P., Szweykowska-Kulinska, Z., Jarmolowski, A., and Karlowski, W.M. (2018). tRex: A web portal for exploration of tRNA-derived fragments in Arabidopsis thaliana. Plant Cell Physiol 59, e1.
Thompson, D.M., and Parker, R. (2009a). The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 185, 43–50.
Thompson, D.M., and Parker, R. (2009b). Stressing out over tRNA cleavage. Cell 138, 215–219.
Van Bortle, K., Phanstiel, D.H., and Snyder, M.P. (2017). Topological organization and dynamic regulation of human tRNA genes during macrophage differentiation. Genome Biol 18, 180.
Vandivier, L.E., Anderson, Z.D., and Gregory, B.D. (2019). HAMR: High-throughput annotation of modified ribonucleotides. Methods Mol Biol 1870, 51–67.
Veneziano, D., Tomasello, L., Balatti, V., Palamarchuk, A., Rassenti, L.Z., Kipps, T.J., Pekarsky, Y., and Croce, C.M. (2019). Dysregulation of different classes of tRNA fragments in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 116, 24252–24258.
Xu, W.L., Yang, Y., Wang, Y.D., Qu, L.H., and Zheng, L.L. (2017). Computational approaches to tRNA-derived small RNAs Noncoding RNA 3, 2.
Yamasaki, S., Ivanov, P., Hu, G.F., and Anderson, P. (2009). Angiogenin cleaves tRNA and promotes stress-induced translational repression. J Cell Biol 185, 35–42.
Yoshida, S., Forno, D.A., Cock, J.H., and Gomez, K.A. (1976). Laboratory Manual for Physiological Studies of Rice. Manila: International Rice Research Institute.
Zheng, G., Qin, Y., Clark, W.C., Dai, Q., Yi, C., He, C., Lambowitz, A.M., and Pan, T. (2015). Efficient and quantitative high-throughput tRNA sequencing. Nat Methods 12, 835–837.
Zhu, L., Li, J., Gong, Y., Wu, Q., Tan, S., Sun, D., Xu, X., Zuo, Y., Zhao, Y., Wei, Y.Q., et al. (2019). Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol Cancer 18, 74.
Zhu, L., Ow, D.W., and Dong, Z. (2018). Transfer RNA-derived small RNAs in plants. Sci China Life Sci 61, 155–161.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (31871321, 31788103, and 31770874), Tianjin Natural Science Foundation of China (16JCZDJC33400), and Tianjin Rice Industrial Technology System of China (ITTRRS2018006). We thank the members in Dr. Shuzhen Men’s lab for help with this work. We also thank Dr. Junbin Wang in Tianjin Agricultural University for providing crop seeds.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Compliance and ethics
The author(s) declare that they have no conflict of interest.
Electronic supplementary material
11427_2020_1891_MOESM1_ESM.docx
Extensive profiling of the expressions of tRNAs and tRNA-derived fragments (tRFs) reveals the complexities of tRNA and tRF populations in plants, approximately 608 KB.
Rights and permissions
About this article
Cite this article
Ma, X., Liu, C., Kong, X. et al. Extensive profiling of the expressions of tRNAs and tRNA-derived fragments (tRFs) reveals the complexities of tRNA and tRF populations in plants. Sci. China Life Sci. 64, 495–511 (2021). https://doi.org/10.1007/s11427-020-1891-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11427-020-1891-8