Skip to main content
Log in

Evidence of constraint in the 3D genome for trans-splicing in human cells

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Fusion transcripts are commonly found in eukaryotes, and many aberrant fusions are associated with severe diseases, including cancer. One class of fusion transcripts is generated by joining separate transcripts through trans-splicing. However, the mechanism of trans-splicing in mammals remains largely elusive. Here we showed evidence to support an intuitive hypothesis that attributes trans-sphcing to the spatial proximity between premature transcripts. A novel trans-splicing detection tool (TSD) was developed to reliably identify intra-chromosomal trans-splicing events (iTSEs) from RNA-seq data. TSD can maintain a remarkable balance between sensitivity and accuracy, thus distinguishing it from most state-of-the-art tools. The accuracy of TSD was experimentally demonstrated by excluding potential false discovery from mosaic genome or template switching during PCR. We showed that iTSEs identified by TSD were frequently found between genomic regulatory elements, which are known to be more prone to interact with each other. Moreover, iTSE sites may be more physically adjacent to each other than random control in the tested human lymphoblastoid cell line according to Hi-C data. Our results suggest that trans-splicing and 3D genome architecture may be coupled in mammals and that our pipeline, TSD, may facilitate investigations of trans-splicing on a systematic and accurate level previously thought impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akers, N.K., Schadt, E.E., and Losic, B. (2018). STAR Chimeric Post for rapid detection of circular RNA and fusion transcripts. Bioinformatics 34, 2364–2370.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen, M.A., Hillier, L.D.W., Waterston, R.H., and Blumenthal, T. (2011). A global analysis of C. eleganstrans-splicing. Genome Res 21, 255–264.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berlivet, S., Paquette, D., Dumouchel, A., Langlais, D., Dostie, J., and Kmita, M. (2013). Clustering of tissue-specific sub-TADs accompanies the regulation of HoxA genes in developing limbs. PLoS Genet 9, e 1004018.

    Google Scholar 

  • Brockdorff, N., Ashworth, A., Kay, G.F., McCabe, V.M., Norris, D.P., Cooper, P.J., Swift, S., and Rastan, S. (1992). The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526.

    CAS  PubMed  Google Scholar 

  • Brugiolo, M., Herzel, L., and Neugebauer, K.M. (2013). Counting on co-transcriptional splicing. FlooPrime Rep 5, 9.

    Google Scholar 

  • Buck, M.J., Nobel, A.B., and Lieb, J.D. (2005). ChlPOTle: A user-friendly tool for the analysis of ChlP-chip data. Genome Biol 6, R97.

    PubMed  PubMed Central  Google Scholar 

  • Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M.C., Maeda, N., Oyama, R., Ravasi, T., Lenhard, B., Wells, C., et al. (2005). The transcriptional landscape of the mammalian genome. Science 309, 1559–1563.

    CAS  PubMed  Google Scholar 

  • Carrara, M., Beccuti, M., Cavallo, F., Donatelli, S., Lazzarato, F., Cordero, F., and Calogero, R.A. (2013). State of art fusion-finder algorithms are suitable to detect transcription-induced chimeras in normal tissues? BMC Bioinformatics 14, S2.

    PubMed  PubMed Central  Google Scholar 

  • Cho, W.K., Jayanth, N., English, B.P., Inoue, T., Andrews, J.O., Conway, W., Grimm, J.B., Spille, J.H., Lavis, L.D., Lionnet, T., et al. RNA polymerase II cluster dynamics predict mRNA output in living cells. eLife, 2016, 5.

    Google Scholar 

  • Chuang, T.J., Wu, C.S., Chen, C.Y., Hung, L.Y., Chiang, T.W., and Yang, M.Y (2016). NCLscan: Accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision. Nucleic Acids Res 44, e29.

    PubMed  Google Scholar 

  • Chuang, T.J., Chen, Y.J., Chen, C.Y., Mai, T.L., Wang, Y.D., Yeh, C.S., Yang, M.Y., Hsiao, Y.T., Chang, T.H., Kuo, T.C., et al. (2018). Integrative transcriptome sequencing reveals extensive alternative trans-splicing and cis-backsplicing in human cells. Nucleic Acids Res 46, 3671–3691.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conrad, R., Thomas, J., Spieth, J., and Blumenthal, T. (1991). Insertion of part of an intron into the 5’ untranslated region of a Caenorhabditis elegans gene converts it into a trans-spliced gene. Mol Cell Biol 11, 1921–1926.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cremer, T., and Cremer, M. (2010). Chromosome territories. Cold Spring Harb Perspect Biol 2, a003889.

    PubMed  PubMed Central  Google Scholar 

  • Davidson, N.M., Majewski, I.J., and Oshlack, A. (2015). JAFFA: High sensitivity transcriptome-focused fusion gene detection. Genome Med 7, 43.

    PubMed  PubMed Central  Google Scholar 

  • Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. Science 295, 1306–1311.

    CAS  PubMed  Google Scholar 

  • Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. (2012). Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Djebali, S., Davis, C.A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A., Tanzer, A., Lagarde, J., Lin, W., Schlesinger, F., et al. (2012). Landscape of transcription in human cells. Nature 489, 101–108.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan, Z., Andronescu, M., Schutz, K., Mcllwain, S., Kim, Y.J., Lee, C., Shendure, J., Fields, S., Blau, C.A., and Noble, W.S. (2010). A three-dimensional model of the yeast genome. Nature 465, 363–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunham, I., Aldred, S.F., Collins, P.J., Davis, C.A., Doyle, F., Epstein, C. B., Frietze, S., Harrow, J., and Kaul, R. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74.

    CAS  Google Scholar 

  • Edgren, H., Murumagi, A., Kangaspeska, S., Nicorici, D., Hongisto, V., Kleivi, K., Rye, I.H., Nyberg, S., Wolf, M., Borresen-Dale, A.L., et al. (2011). Identification of fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol 12, R6.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engreitz, J.M., Agarwala, V., and Mirny, L.A. (2012). Three-dimensional genome architecture influences partner selection for chromosomal translocations in human disease. PLoS ONE 7, e44196.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fullwood, M.J., Liu, M.H., Pan, Y.F., Liu, J., Xu, H., Mohamed, Y.B., Orlov, Y.L., Velkov, S., Ho, A., Mei, P.H., et al. (2009). An oestrogen-receptor-a-bound human chromatin interactome. Nature 462, 58–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, T., He, B., Liu, S., Zhu, H., Tan, K., and Qian, J. (2016). Enhancer Atlas: A resource for enhancer annotation and analysis in 105 human cell/tissue types. Bioinformatics btw495.

    Google Scholar 

  • Ge, H., Liu, K., Juan, T., Fang, F., Newman, M., and Hoeck, W. (2011). FusionMap: Detecting fusion genes from next-generation sequencing data at base-pair resolution. Bioinformatics 27, 1922–1928.

    CAS  PubMed  Google Scholar 

  • Gingeras, T.R. (2009). Implications of chimaeric non-co-linear transcripts. Nature 461, 206–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haas, B., Dobin, A., Stransky, N., Li, B., Yang, X., Tickle, T., Bankapur, A., Ganote, C., Doak, T., Pochet, N., et al. (2017). STAR-Fusion: Fast and accurate fusion transcript detection from RNA-seq. BioRxiv.

    Google Scholar 

  • Hannon, G.J., Maroney, P.A., and Nilsen, T.W. U small nuclear ribonu- cleoprotein requirements for nematode cis- and trans-splicing in vitro. J Biol Chem, 1991, 266: 22792–22795.

    CAS  PubMed  Google Scholar 

  • Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S., et al. (2012). GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res 22, 1760–1774.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hastings, K.E.M. (2005). SL trans-splicing: Easy come or easy go? Trends Genets 21, 240–247.

    CAS  Google Scholar 

  • Hoffmann, S., Otto, C., Doose, G., Tanzer, A., Langenberger, D., Christ, S., Kunz, M., Holdt, L.M., Teupser, D., Hackermüller, J., et al. (2014). A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection. Genome Biol 15, R34.

    PubMed  PubMed Central  Google Scholar 

  • Houseley, J., and Tollervey, D. (2010). Apparent non-canonical trans-splicing is generated by reverse transcriptase in vitro. PLoS ONE 5, el2271.

    Google Scholar 

  • Horton, M., Bodenhausen, N., and Bergelson, J. (2010). MARTA: A suite of Java-based tools for assigning taxonomic status to DNA sequences. Bioinformatics 26, 568–569.

    CAS  PubMed  Google Scholar 

  • Huang, W., Li, L., Myers, J.R., and Marth, G.T. (2012). ART: A next-generation sequencing read simulator. Bioinformatics 28, 593–594.

    PubMed  Google Scholar 

  • Iyer, M.K., Chinnaiyan, A.M., and Maher, C.A. (2011). ChimeraScan: A tool for identifying chimeric transcription in sequencing data. Bioinformatics 27, 2903–2904.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, W., Qiu, K., He, M., Song, P., Zhou, Q., Zhou, F., Yu, Y., Zhu, D., Nickerson, M.L., Wan, S., et al. (2013). SOAPfuse: An algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome Biol 14, R12.

    PubMed  PubMed Central  Google Scholar 

  • Jia, Y., Xie, Z., and Li, H. (2016). Intergenically spliced chimeric RNAs in cancer. Trends Cancer 2, 475–484.

    PubMed  PubMed Central  Google Scholar 

  • Kangaspeska, S., Hultsch, S., Edgren, H., Nicorici, D., Murumagi, A., and Kallioniemi, O. (2012). Reanalysis of RNA-sequencing data reveals several additional fusion genes with multiple isoforms. PLoS ONE 7, e48745.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann, S., Fuchs, C., Gonik, M., Khrameeva, E.E., Mironov, A.A., and Frishman, D. (2015). Inter-chromosomal contact networks provide insights into Mammalian chromatin organization. PLoS ONE 10, e0126125.

    PubMed  PubMed Central  Google Scholar 

  • Kent, W.J. (2002). BLAT-The BLAST-like alignment tool. Genome Res 12, 656–664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, D., and Salzberg, S.L. (2011). TopHat-Fusion: An algorithm for discovery of novel fusion transcripts. Genome Biol 12, R72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Razzaq, S.K., Vo, A.D., Gautam, M., and Li, H. (2016a). Identifying fusion transcripts using next generation sequencing. WIREs RNA 7, 811–823.

    CAS  PubMed  Google Scholar 

  • Kumar, S., Vo, A.D., Qin, F., and Li, H. (2016b). Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data. Sci Rep 6, 21597.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lasda, E.L., and Blumenthal, T. (2011). Tram-splicing. WIREs RNA 2, 417–434.

    CAS  PubMed  Google Scholar 

  • Lei, Q., Li, C., Zuo, Z., Huang, C., Cheng, H., and Zhou, R. (2016). Evolutionary insights into RNA trans-splicing in vertebrates. Genome Biol Evol 8, 562–577.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Wang, J., Mor, G., and Sklar, J. (2008). A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 321, 1357–1361.

    CAS  PubMed  Google Scholar 

  • Li, W., Freudenberg, J., and Miramontes, P. (2014). Diminishing return for increased mappability with longer sequencing reads: Implications of the k-mer distributions in the human genome. BMC Bioinformatics 15, 2.

    PubMed  PubMed Central  Google Scholar 

  • Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O, et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, S., Tsai, W.H., Ding, Y., Chen, R., Fang, Z., Huo, Z., Kim, S.H., Ma, T., Chang, T.Y., Priedigkeit, N.M., et al. (2016). Comprehensive evaluation of fusion transcript detection algorithms and a meta-caller to combine top performing methods in paired-end RNA-seq data. Nucleic Acids Res 44, e47.

    PubMed  Google Scholar 

  • Mao, Y.S., Zhang, B., and Spector, D.L. (2011). Biogenesis and function of nuclear bodies. Trends Genets 27, 295–306.

    CAS  Google Scholar 

  • McCord, R.P, and Balajee, A. (2018). 3D genome organization influences the chromosome translocation pattern. In: Zhang, Y, ed. Chromosome Translocation. Advances in Experimental Medicine and Biology. Singapore: Springer, 113–133.

    Google Scholar 

  • McManus, C.J., Duff, M.O, Eipper-Mains, J., and Graveley, B.R. (2010). Global analysis of trans-splicing in Drosophila. Proc Natl Acad Sci USA 107, 12975–12979.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McPherson, A., Hormozdiari, F., Zayed, A., Giuliany, R., Ha, G., Sun, M. G.F., Griffith, M., Heravi Moussavi, A., Senz, J., Melnyk, N., et al. (2011). deFuse: An algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comput Biol 7, el001138.

    Google Scholar 

  • Mifsud, B., Tavares-Cadete, F., Young, A.N., Sugar, R., Schoenfelder, S., Ferreira, L., Wingett, S.W., Andrews, S., Grey, W., Ewels, P.A., et al. (2015). Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 47, 598–606.

    CAS  PubMed  Google Scholar 

  • Mignone, F., Gissi, C., Liuni, S., and Pesole, G. (2002). Untranslated regions of mRNAs. Genome Biol 3, reviews0004.1.

    Google Scholar 

  • Murtagh, F., and Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: Which algorithms implement ward’s criterion? J Classif 31, 274–295.

    Google Scholar 

  • Nicorici, D., Šatalan, M., Edgren, H., Kangaspeska, S., Murumagi, A., Kallioniemi, O., Virtanen, S., Kilkku, O (2014). FusionCatcher-A tool for finding somatic fusion genes in paired-end RNA-sequencing data. bioRxiv.

    Google Scholar 

  • Nowotny, J., Wells, A., Oluwadare, O., Xu, L., Cao, R., Trieu, T., He, C., and Cheng, J. (2016). GMOL: An interactive tool for 3D genome structure visualization. Sci Rep 6, 20802.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, Z., Yuan, C., Zellmer, L., Liu, S., Xu, N., and Liao, D.J. (2015). Hypothesis: Artifacts, including spurious chimeric RNAs with a short homologous sequence, caused by consecutive reverse transcriptions and endogenous random primers. J Cancer 6, 555–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Philippe, N., Salson, M., Commes, T., and Rivals, E. (2013). CRAC: An integrated approach to the analysis of RNA-seq reads. Genome Biol 14, R30.

    PubMed  PubMed Central  Google Scholar 

  • Piazza, R., Pirola, A., Spinelli, R., Valletta, S., Redaelli, S., Magistroni, V., and Gambacorti-Passerini, C. (2012). FusionAnalyser: A new graphical, event-driven tool for fusion rearrangements discovery. Nucleic Acids Res 40, el23.

    Google Scholar 

  • Rao, S.S.P, Huntley, M.H., Durand, N.C, Stamenova, E.K., Bochkov, I.D., Robinson, J.T., Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., et al. (2014). A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rickman, D.S., Pflueger, D., Moss, B., VanDoren, V.E., Chen, C.X., de la Taille, A., Kuefer, R., Tewari, A.K., Setlur, S.R., Demichelis, F., et al. (2009). SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res 69, 2734–2738.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Martin, B., Palumbo, E., Marco-Sola, S., Griebel, T, Ribeca, P., Alonso, G., Rastrojo, A., Aguado, B., Guigo, R., and Djebali, S. (2017). ChimPipe: Accurate detection of fusion genes and transcription-induced chimeras from RNA-seq data. BMC Genomics 18, 7.

    PubMed  PubMed Central  Google Scholar 

  • Roix, J.J., McQueen, P.G., Munson, P.J., Parada, L.A., and Misteli, T. (2003). Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet 34, 287–291.

    CAS  PubMed  Google Scholar 

  • Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A., and Cavalli, G. (2012). Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472.

    CAS  PubMed  Google Scholar 

  • Sutherland, H., and Bickmore, W.A. (2009). Transcription factories: Gene expression in unions? Nat Rev Genet 10, 457–466.

    CAS  PubMed  Google Scholar 

  • Sutton, R.E., and Boothroyd, J.C. (1986). Evidence for trans splicing in trypanosomes. Cell 47, 527–535.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, Z., Luo, O.J., Li, X., Zheng, M., Zhu, J.J., Szalaj, P., Trzaskoma, P., Magalska, A., Wlodarczyk, J., Ruszczycki, B., et al. (2015). CTCF- mediated human 3D genome architecture reveals chromatin topology for transcription. Cell 163, 1611–1627.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Torres-Garcia, W., Zheng, S., Sivachenko, A., Vegesna, R., Wang, Q., Yao, R., Berger, M.F., Weinstein, J.N., Getz, G., and Verhaak, R.G.W. (2014). PRADA: Pipeline for RNA sequencing data analysis. Bioinformatics 30, 2224–2226.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trieu, T, Oluwadare, O., and Cheng, J. (2019). Hierarchical reconstruction of high-resolution 3D models of large chromosomes. Sci Rep 9, 4971.

    PubMed  PubMed Central  Google Scholar 

  • Wahl, M.C, Will, C.L., and Luhrmann, R. (2009). The spliceosome: Design principles of a dynamic RNP machine. Cell 136, 701–718.

    CAS  PubMed  Google Scholar 

  • Wang, K., Singh, D., Zeng, Z., Coleman, S.J., Huang, Y, Savich, G.L., He, X., Mieczkowski, P., Grimm, S.A., Perou, CM., et al. (2010). MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38, el78.

    Google Scholar 

  • Wu, C.S., Yu, C.Y., Chuang, C.Y., Hsiao, M., Kao, C.F., Kuo, H.C, and Chuang, T.J. (2014). Integrative transcriptome sequencing identifies trans-splicing events with important roles in human embryonic stem cell pluripotency. Genome Res 24, 25–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, B., Yang, W., Ouyang, Y, Chen, L., Jiang, H, Liao, Y, and Liao, D.J. (2016). Two RNAs or DNAs may artificially fuse together at a short homologous sequence (SHS) during reverse transcription or polymerase chain reactions, and thus reporting an SHS-containing chimeric RNA requires extra caution. PLoS ONE 11, e0154855.

    PubMed  PubMed Central  Google Scholar 

  • Yan, Z., Huang, N, Wu, W., Chen, W., Jiang, Y, Chen, J., Huang, X., Wen, X., Xu, J., Jin, Q., et al. (2019). Genome-wide colocalization of RNA-DNA interactions and fusion RNA pairs. Proc Natl Acad Sci USA 116, 3328–3337.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yates, B., Braschi, B., Gray, K.A., Seal, R.L., Tweedie, S., and Bruford, E. A. (2017). Genenames.org: The HGNC and VGNC resources in 2017. Nucleic Acids Res 45, D619–D625.

    CAS  PubMed  Google Scholar 

  • Zhang, H, Li, E, Jia, Y, Xu, B., Zhang, Y, Li, X., and Zhang, Z. (2017). Characteristic arrangement of nucleosomes is predictive of chromatin interactions at kilobase resolution. Nucleic Acids Res 45, 12739–12751.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y, McCord, R.P, Ho, Y.J., Lajoie, B.R., Hildebrand, D.G., Simon, A.C., Becker, M.S., Alt, F.W., and Dekker, J. (2012). Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell 148, 908–921.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y, Wong, C.H., Birnbaum, R.Y, Li, G., Favaro, R., Ngan, C.Y., Lim, J., Tai, E., Poh, H.M., Wong, E., et al. (2013). Chromatin connectivity maps reveal dynamic promoter-enhancer long-range associations. Nature 504, 306–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Z.W., Roy, R., Gebhardt, J.C.M., Suter, D.M., Chapman, A.R., and Xie, X.S. (2014). Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy. Proc Natl Acad Sci USA 111, 681–686.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31671342, 31871331, 91540114, and 31401112). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Thanks to David Martin for English language editorial services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feifei Li, Jing Li or Zhihua Zhang.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhang, Y., Li, X. et al. Evidence of constraint in the 3D genome for trans-splicing in human cells. Sci. China Life Sci. 63, 1380–1393 (2020). https://doi.org/10.1007/s11427-019-1609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1609-6

Keyword

Navigation