Skip to main content
Log in

Identification of Ca2+ signaling components in neural stem/progenitor cells during differentiation into neurons and glia in intact and dissociated zebrafish neurospheres

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

The development of the CNS in vertebrate embryos involves the generation of different sub-types of neurons and glia in a complex but highly-ordered spatio-temporal manner. Zebrafish are commonly used for exploring the development, plasticity and regeneration of the CNS, and the recent development of reliable protocols for isolating and culturing neural stem/progenitor cells (NSCs/NPCs) from the brain of adult fish now enables the exploration of mechanisms underlying the induction/specification/differentiation of these cells. Here, we refined a protocol to generate proliferating and differentiating neurospheres from the entire brain of adult zebrafish. We demonstrated via RT-qPCR that some isoforms of ip3r, ryr and stim are upregulated/downregulated significantly in differentiating neurospheres, and via immunolabelling that 1,4,5-inositol trisphosphate receptor (IP3R) type-1 and ryanodine receptor (RyR) type-2 are differentially expressed in cells with neuron- or radial glial-like properties. Furthermore, ATP but not caffeine (IP3R and RyR agonists, respectively), induced the generation of Ca2+ transients in cells exhibiting neuron- or glial-like morphology. These results indicate the differential expression of components of the Ca2+-signaling toolkit in proliferating and differentiating cells. Thus, given the complexity of the intact vertebrate brain, neurospheres might be a useful system for exploring neurodegenerative disease diagnosis protocols and drug development using Ca2+ signaling as a read-out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolf, B., Chapouton, P., Lam, C.S., Topp, S., Tannhäuser, B., Strähle, U., Götz, M., and Bally-Cuif, L. (2006). Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev Biol 295, 278–293.

    Article  PubMed  CAS  Google Scholar 

  • Akamatsu, W., Fujihara, H., Mitsuhashi, T., Yano, M., Shibata, S., Hayakawa, Y., Okano, H.J., Sakakibara, S.I., Takano, H., Takano, T., et al. (2005). The RNA-binding protein HuD regulates neuronal cell identity and maturation. Proc Natl Acad Sci USA 102, 4625–4630.

    Article  PubMed  CAS  Google Scholar 

  • Alzayady, K.J., Sebé-Pedrós, A., Chandrasekhar, R., Wang, L., Ruiz-Trillo, I., and Yule, D.I. (2015). Tracing the evolutionary history of inositol 1,4,5-trisphosphate receptor: insights from analysis of Capsaspora owczarzaki Ca2+ release channel orthologues. Mol Biol Evol 32, 2236–2253.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azari, H., Rahman, M., Sharififar, S., and Reynolds, B.A. (2010). Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J Vis Exp in press doi: 10.3791/2393.

    Google Scholar 

  • Barami, K., Iversen, K., Furneaux, H., and Goldman, S.A. (1995). Hu protein as an early marker of neuronal phenotypic differentiation by subependymal zone cells of the adult songbird forebrain. J Neurobiol 28, 82–101.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, E.M., and Mandel, P. (1981). Calcium transport by primary cultured neuronal and glial cells from chick embryo brain. J Neurochem 36, 82–85.

    Article  PubMed  CAS  Google Scholar 

  • Berridge, M.J., Bootman, M.D., and Roderick, H.L. (2003). Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4, 517–529.

    Article  PubMed  CAS  Google Scholar 

  • Bolsover, S.R. (2005). Calcium signalling in growth cone migration. Cell Calcium 37, 395–402.

    Article  PubMed  CAS  Google Scholar 

  • Bretaud, S., Allen, C., Ingham, P.W., and Bandmann, O. (2007). P53- dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson’s disease. J Neurochem 100, 1626–1635.

    PubMed  CAS  Google Scholar 

  • Brewer, G.J., and Torricelli, J.R. (2007). Isolation and culture of adultneurons and neurospheres. Nat Protoc 2, 1490–1498.

    Article  PubMed  CAS  Google Scholar 

  • Casadei, R., Pelleri, M.C., Vitale, L., Facchin, F., Lenzi, L., Canaider, S., Strippoli, P., and Frabetti, F. (2011). Identification of housekeeping genes suitable for gene expression analysis in the zebrafish. Gene Express Patterns 11, 271–276.

    Article  CAS  Google Scholar 

  • Chan, C.M., Chen, Y., Hung, T.S., Miller, A.L., Shipley, A.M., and Webb, S.E. (2015). Inhibition of SOCE disrupts cytokinesis in zebrafish embryos via inhibition of cleavage furrow deepening. Int J Dev Biol 59, 289–301.

    Article  PubMed  CAS  Google Scholar 

  • Chan, C.M., Aw, J.T.M., Webb, S.E., and Miller, A.L. (2016a). SOCE proteins, STIM1 and Orai1, are localized to the cleavage furrow during cytokinesis of the first and second cell division cycles in zebrafish embryos. Zygote 24, 880–889.

    Article  PubMed  CAS  Google Scholar 

  • Chan, H.Y.S., Cheung, M.C., Gao, Y., Miller, A.L., and Webb, S.E. (2016b). Expression and reconstitution of the bioluminescent Ca2+ reporter aequorin in human embryonic stem cells, and exploration of the presence of functional IP3 and ryanodine receptors during the early stages of their differentiation into cardiomyocytes. Sci China Life Sci 59, 811–824.

    Article  PubMed  CAS  Google Scholar 

  • Cheek, T.R., Moreton, R.B., Berridge, M.J., Stauderman, K.A., Murawsky, M.M., and Bootman, M.D. (1993). Quantal Ca2+ release from caffeinesensitive stores in adrenal chromaffin cells. J Biol Chem 268, 27076–27083.

    PubMed  CAS  Google Scholar 

  • Cortés-Campos, C., Letelier, J., Ceriani, R., and Whitlock, K.E. (2015). Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin- releasing hormone (GnRH) neurons. Biol Open 4, 1077–1086.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daynac, M., and Petritsch, C.K. (2017). Regulation of asymmetric cell division in mammalian neural stem cell and cancer precursor cells. Results Probl Cell Diff 61, 375–399.

    Article  CAS  Google Scholar 

  • Deitmer, J.W., Verkhratsky, A.J., and Lohr, C. (1998). Calcium signalling in glial cells. Cell Calcium 24, 405–416.

    Article  PubMed  CAS  Google Scholar 

  • Deleyrolle, L.P., and Reynolds, B.A. (2009). Isolation, and expansion, and differentiation of adult mammalian neural stem and progenitor cells using the neurosphere assay. Methods Mol Biol 549, 91–101.

    Article  PubMed  CAS  Google Scholar 

  • Dinno, A. (2015). Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. Stata J 15, 292–300.

    Article  Google Scholar 

  • Faure, A.V., Grunwald, D., Moutin, M.-J., Hilly, M., Mauger, J.-P., Marty, I., De Waard, M., Villaz, M., and Albrieux, M. (2002). Developmental expression of the calcium release channels during early neurogenesis of the mouse cerebral cortex. Eur J Neurosci 14, 1613–1622.

    Article  Google Scholar 

  • Ferris, C.D., Huganir, R.L., and Snyder, S.H. (1990). Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. Proc Natl Acad Sci USA 87, 2147–2151.

    Article  PubMed  CAS  Google Scholar 

  • Fiedler, M.J., and Nathanson, M.H. (2011). The type I inositol 1,4,5-trisphosphate receptor interacts with protein 4.1N to mediate neurite formation through intracellular Ca2+ waves. Neurosignals 19, 75–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fong, H., Hohenstein, K.A., and Donovan, P.J. (2008). Regulation of selfrenewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells 26, 1931–1938.

    Article  PubMed  CAS  Google Scholar 

  • Furlan, G., Cuccioli, V., Vuillemin, N., Dirian, L., Muntasell, A.J., Coolen, M., Dray, N., Bedu, S., Houart, C., Beaurepaire, E., et al. (2017). Lifelong neurogenic activity of individual neural stem cells and continuous growth establish an outside-in architecture in the teleost pallium. Curr Biol 27, 3288–3301.e3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furuichi, T., Furutama, D., Hakamata, Y., Nakai, J., Takeshima, H., and Mikoshiba, K. (1994). Multiple types of ryanodine receptor/Ca2+ release channels are differentially expressed in rabbit brain. J Neurosci 14, 4794–4805.

    Article  PubMed  CAS  Google Scholar 

  • Goffart, N., Kroonen, J., and Rogister, B. (2013). Glioblastoma-initiating cells: relationship with neural stem cells and the micro-environment. Cancers 5, 1049–1071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grandel, H., Kaslin, J., Ganz, J., Wenzel, I., and Brand, M. (2006). Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 295, 263–277.

    Article  PubMed  CAS  Google Scholar 

  • Gu, X., Olson, E., and Spitzer, N. (1994). Spontaneous neuronal calcium spikes and waves during early differentiation. J Neurosci 14, 6325–6335.

    Article  PubMed  CAS  Google Scholar 

  • Guan, C.B., Xu, H.T., Jin, M., Yuan, X.B., and Poo, M.M. (2007). Longrange Ca2+ signaling from growth cone to soma mediates reversal of neuronal migration induced by Slit-2. Cell 129, 385–395.

    Article  PubMed  CAS  Google Scholar 

  • Guo, W., Patzlaff, N.E., Jobe, E.M., and Zhao, X. (2012). Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse. Nat Protoc 7, 2005–2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hakamata, Y., Nakai, J., Takeshima, H., and Imoto, K. (1992). Primary structure and distribution of a novel ryanodine receptor/calcium release channel from rabbit brain. FEBS Lett 312, 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Hao, B., Webb, S.E., Miller, A.L., and Yue, J. (2016). The role of Ca2+ signaling on the self-renewal and neural differentiation of embryonic stem cells (ESCs). Cell Calcium 59, 67–74.

    Article  PubMed  CAS  Google Scholar 

  • Henley, J., and Poo, M. (2004). Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 14, 320–330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hinsch, K., and Zupanc, G.K.H. (2007). Generation and long-term persistence of new neurons in the adult zebrafish brain: a quantitative analysis. Neuroscience 146, 679–696.

    Article  PubMed  CAS  Google Scholar 

  • Hol, E.M., and Pekny, M. (2015). Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32, 121–130.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K., Barragan, J., Bashiruddin, S., Smith, C.J., Tyrrell, C., Parsons, M.J., Doris, R., Kucenas, S., Downes, G.B., Velez, C.M., et al. (2016). Gfap-positive radial glial cells are an essential progenitor population for later-born neurons and glia in the zebrafish spinal cord. Glia 64, 1170–1189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaslin, J., Ganz, J., and Brand, M. (2008). Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philos Trans R Soc B-Biol Sci 363, 101–122.

    Article  Google Scholar 

  • Kaslin, J., Ganz, J., Geffarth, M., Grandel, H., Hans, S., and Brand, M. (2009). Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche. J Neurosci 29, 6142–6153.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim, C.H., Ueshima, E., Muraoka, O., Tanaka, H., Yeo, S.Y., Huh, T.L., and Miki, N. (1996). Zebrafish elav/HuC homologue as a very early neuronal marker. Neurosci Lett 216, 109–112.

    Article  PubMed  CAS  Google Scholar 

  • Lai, F.A., Dent, M., Wickenden, C., Xu, L., Kumari, G., Misra, M., Lee, H. B., Sar, M., and Meissner, G. (1992). Expression of a cardiac Ca2+-release channel isoform in mammalian brain. Biochem J 288, 553–564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lam, C.S., März, M., and Strähle, U. (2009). gfap and nestin reporter lines reveal characteristics of neural progenitors in the adult zebrafish brain. Dev Dyn 238, 475–486.

    Article  PubMed  CAS  Google Scholar 

  • Lanner, J.T., Georgiou, D.K., Joshi, A.D., and Hamilton, S.L. (2010). Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harbor Perspect Biol 2, a003996–a003996.

    Article  CAS  Google Scholar 

  • Leclerc, C., Webb, S.E., Daguzan, C., Moreau, M., and Miller, A.L. (2000). Imaging patterns of calcium transients during neural induction in Xenopus laevis embryos. J Cell Sci 113, 3519–3529.

    PubMed  CAS  Google Scholar 

  • Leclerc, C., Lee, M., Webb, S.E., Moreau, M., and Miller, A.L. (2003). Calcium transients triggered by planar signals induce the expression of ZIC3 gene during neural induction in Xenopus. Dev Biol 261, 381–390.

    Article  PubMed  CAS  Google Scholar 

  • Leclerc, C., Haeich, J., Aulestia, F.J., Kilhoffer, M.C., Miller, A.L., Néant, I., Webb, S.E., Schaeffer, E., Junier, M.P., Chneiweiss, H., et al. (2016). Calcium signaling orchestrates glioblastoma development: facts and conjunctures. Biochim Biophys Acta 1863, 1447–1459.

    Article  PubMed  CAS  Google Scholar 

  • Lee, K.W., Webb, S.E., and Miller, A.L. (2003). Ca2+ released via IP3 receptors is required for furrow deepening during cytokinesis in zebrafish embryos. Int J Dev Biol 47, 411–421.

    PubMed  CAS  Google Scholar 

  • Lopez-Ramirez, M.A., Calvo, C.F., Ristori, E., Thomas, J.L., and Nicoli, S. (2016). Isolation and culture of adult zebrafish brain-derived neurospheres. J Vis Exp (108), 53617.

    Google Scholar 

  • Makhija, D.T., and Jagtap, A.G. (2014). Studies on sensitivity of zebrafish as a model organism for Parkinson’s disease: comparison with rat model. J Pharmacol Pharmacother 5, 39–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marichal, N., García, G., Radmilovich, M., Trujillo-Cenóz, O., and Russo, R.E. (2009). Enigmatic central canal contacting cells: immature neuronsin “Standby Mode”? J Neurosci 29, 10010–10024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKeown, S.J., Mohsenipour, M., Bergner, A.J., Young, H.M., and Stamp, L.A. (2017). Exposure to GDNF enhances the ability of enteric neural progenitors to generate an enteric nervous system. Stem Cell Rep 8, 476–488.

    Article  CAS  Google Scholar 

  • Mirsadeghi, S., Shahbazi, E., Hemmesi, K., Nemati, S., Baharvand, H., Mirnajafi-Zadeh, J., and Kiani, S. (2017). Development of membrane ion channels during neural differentiation from human embryonic stem cells. Biochem Biophys Res Commun 491, 166–172.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, P.J., Hübner, R., Rolfs, A., and Frech, M.J. (2013). Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels. Stem Cells Dev 22, 2477–2486.

    Article  PubMed  CAS  Google Scholar 

  • Mori, F., Fukaya, M., Abe, H., Wakabayashi, K., and Watanabe, M. (2000). Developmental changes in expression of the three ryanodine receptor mRNAs in the mouse brain. Neurosci Lett 285, 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Morshead, C.M., Reynolds, B.A., Craig, C.G., McBurney, M.W., Staines, W.A., Morassutti, D., Weiss, S., and van der Kooy, D. (1994). Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082.

    Article  PubMed  CAS  Google Scholar 

  • Murayama, T., and Ogawa, Y. (1996). Properties of Ryr3 ryanodine receptor isoform in mammalian brain. J Biol Chem 271, 5079–5084.

    Article  PubMed  CAS  Google Scholar 

  • Newman, M., Ebrahimie, E., and Lardelli, M. (2014). Using the zebrafish model for Alzheimer’s disease research. Front Genet 5, 189.

    PubMed  PubMed Central  Google Scholar 

  • Pastrana, E., Silva-Vargas, V., and Doetsch, F. (2011). Eyes wide open: a critical review of sphere-formation as an assay for stem cells. Cell Stem Cell 8, 486–498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ray, B., Chopra, N., Long, J.M., and Lahiri, D.K. (2014). Human primary mixed brain cultures: preparation, differentiation, characterization and application to neuroscience research. Mol Brain 7, 63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reynolds, B.A., and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.

    Article  PubMed  CAS  Google Scholar 

  • Ringler, S.L., Aye, J., Byrne, E., Anderson, M., and Turner, C.P. (2008). Effects of disrupting calcium homeostasis on neuronal maturation: early inhibition and later recovery. Cell Mol Neurobiol 28, 389–409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ristori, E., Lopez-Ramirez, M.A., Narayanan, A., Hill-Teran, G., Moro, A., Calvo, C.F., Thomas, J.L., and Nicoli, S. (2015). A Dicer-miR-107 interaction regulates biogenesis of specific miRNAs crucial for neurogenesis. Dev Cell 32, 546–560.

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg, S.S., and Spitzer, N.C. (2011). Calcium signaling in neuronal development. Cold Spring Harbor Perspect Biol 3, a004259.

    Article  CAS  Google Scholar 

  • Salter, M., and Hicks, J. (1994). ATP-evoked increases in intracellular calcium in neurons and glia from the dorsal spinal cord. J Neurosci 14, 1563–1575.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R., Strähle, U., and Scholpp, S. (2013). Neurogenesis in zebrafish —from embryo to adult. Neural Dev 8, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharp, A.H., Nucifora, F.C., Blondel, O., Sheppard, C.A., Zhang, C., Snyder, S.H., Russell, J.T., Ryugoand, D.K., and Ross, C.A. (1999). Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol 406, 207–220.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, P.B., Holtzclaw, L.A., Langley, D.B., and Russell, J.T. (1998). Characterization of ryanodine receptors in oligodendrocytes, type 2 astrocytes, and O-2A progenitors. J Neurosci Res 52, 468–482.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671–675.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Somasundaram, A., Shum, A.K., McBride, H.J., Kessler, J.A., Feske, S., Miller, R.J., and Prakriya, M. (2014). Store-operated CRAC channels regulate gene expression and proliferation in neural progenitor cells. J Neurosci 34, 9107–9123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takei, K., Shin, R.M., Inoue, T., Kato, K., and Mikoshiba, K. (1998). Regulation of nerve growth mediated by inositol 1,4,5-trisphosphate receptors in growth cones. Science 282, 1705–1708.

    Article  PubMed  CAS  Google Scholar 

  • Torrado, E.F., Gomes, C., Santos, G., Fernandes, A., Brites, D., and Falcão, A.S. (2014). Directing mouse embryonic neurosphere differentiation toward an enriched neuronal population. Int J Dev Neurosci 37, 94–99.

    Article  PubMed  Google Scholar 

  • Toth, A.B., Shum, A.K., and Prakriya, M. (2016). Regulation of neurogenesis by calcium signaling. Cell Calcium 59, 124–134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Urbán, N., and Guillemot, F. (2014). Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci 8, 396.

    Article  PubMed  PubMed Central  Google Scholar 

  • Usachev, Y., Shmigol, A., Pronchuk, N., Kostyuk, P., and Verkhratsky, A. (1993). Caffeine-induced calcium release from internal stores in cultured rat sensory neurons. Neuroscience 57, 845–859.

    Article  PubMed  CAS  Google Scholar 

  • Weissman, T.A., Riquelme, P.A., Ivic, L., Flint, A.C., and Kriegstein, A.R. (2004). Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43, 647–661.

    Article  PubMed  CAS  Google Scholar 

  • Whalley, K., Gögel, S., Lange, S., and Ferretti, P. (2009). Changes in progenitor populations and ongoing neurogenesis in the regenerating chick spinal cord. Dev Biol 332, 234–245.

    Article  PubMed  CAS  Google Scholar 

  • Wie, M.B., Koh, J.Y., Won, M.H., Lee, J.C., Shin, T.K., Moon, C.J., Ha, H. J., Park, S.M., and Kim, H.C. (2001). BAPTA/AM, an intracellular calcium chelator, induces delayed necrosis by lipoxygenase-mediated free radicals in mouse cortical cultures. Prog Neuropsychopharmacol Biol Psychiatry 25, 1641–1659.

    Article  PubMed  CAS  Google Scholar 

  • Wu, H.H., Brennan, C., and Ashworth, R. (2011). Ryanodine receptors, a family of intracellular calcium ion channels, are expressed throughout early vertebrate development. BMC Res Notes 4, 541.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan, X., Curtin, J., Xiong, Y., Liu, G., Waschsmann-Hogiu, S., Farkas, D. L., Black, K.L., and Yu, J.S. (2004). Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene 23, 9392–9400.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S., Fritz, N., Ibarra, C., and Uhlén, P. (2011). Inositol 1,4,5-trisphosphate receptor subtype-specific regulation of calcium oscillations. Neurochem Res 36, 1175–1185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng, J.Q., and Poo, M. (2007). Calcium signaling in neuronal motility. Annu Rev Cell Dev Biol 23, 375–404.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Jeffrey J. Kelu (Division of Life Science, HKUST) for helping us with the statistics. This work was supported by the ANR/RGC Joint Research Scheme Award (A-HKUST601/13), the HK RGC General Research Fund awards (662113, 16101714, 16100115) and Funding from the HKITC (ITCPD/17-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. Webb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tse, M.K., Hung, T.S., Chan, C.M. et al. Identification of Ca2+ signaling components in neural stem/progenitor cells during differentiation into neurons and glia in intact and dissociated zebrafish neurospheres. Sci. China Life Sci. 61, 1352–1368 (2018). https://doi.org/10.1007/s11427-018-9315-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-018-9315-6

Keywords