Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Science China Life Sciences
  3. Article

Identification of medaka magnetoreceptor and cryptochromes

  • Research Paper
  • Open access
  • Published: 17 November 2016
  • Volume 60, pages 271–278, (2017)
  • Cite this article
Download PDF

You have full access to this open access article

Science China Life Sciences Aims and scope Submit manuscript
Identification of medaka magnetoreceptor and cryptochromes
Download PDF
  • Yunzhi Wang1,
  • Jianbin Chen1,
  • Feng Zhu1 &
  • …
  • Yunhan Hong1 
  • 1489 Accesses

  • 9 Citations

  • Explore all metrics

Abstract

Magnetoreception is a hallmark ability of animals for orientation and migration via sensing and utilizing geomagnetic fields. Magnetoreceptor (MagR) and cryptochromes (Cry) have recently been identified as the basis for magnetoreception in Drosophila. However, it has remained unknown whether MagR and Cry have conserved roles in diverse animals. Here we report the identification and expression of magr and cry genes in the fish medaka (Oryzias latipes). Cloning and sequencing identified a single magr gene, four cry genes and one cry-like gene in medaka. By sequence alignment, chromosomal synteny and gene structure analysis, medaka cry2 and magr were found to be the orthologs of human Cry2 and Magr, with cry1aa and cry1ab being coorthologs of human Cry1. Therefore, magr and cry2 have remained as single copy genes, whereas cry1 has undergone two rounds of gene duplication in medaka. Interestingly, magr and cry genes were detected in various stages throughout embryogenesis and displayed ubiquitous expression in adult organs rather than specific or preferential expression in neural organs such as brain and eye. Importantly, magr knockdown by morpholino did not produce visible abnormality in developing embryos, pointing to the possibility of producing viable magr knockouts in medaka as a vertebrate model for magnet biology.

Article PDF

Download to read the full article text

Similar content being viewed by others

Identification of zebrafish magnetoreceptor and cryptochrome homologs

Article Open access 06 September 2016

Zebrafish and medaka offer insights into the neurobehavioral correlates of vertebrate magnetoreception

Article Open access 23 February 2018

A novel isoform of cryptochrome 4 (Cry4b) is expressed in the retina of a night-migratory songbird

Article Open access 25 September 2020
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Aizawa, K., Shimada, A., Naruse, K., Mitani, H., and Shima, A. (2003). The medaka midblastula transition as revealed by the expression of the paternal genome. Gene Expr Patterns 3, 43–47.

    Article  CAS  PubMed  Google Scholar 

  • Amores, A., Force, A., Yan, Y.L., Joly, L., Amemiya, C., Fritz, A., Ho, R.K., Langeland, J., Prince, V., Wang, Y.L., Westerfield, M., Ekker, M., and Postlethwait, J.H. (1998). Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711–1714.

    Article  CAS  PubMed  Google Scholar 

  • Bazalova, O., Kvicalova, M., Valkova, T., Slaby, P., Bartos, P., Netusil, R., Tomanova, K., Braeunig, P., Lee, H.J., Sauman, I., Damulewicz, M., Provaznik, J., Pokorny, R., Dolezel, D., and Vacha, M. (2016). Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc Natl Acad Sci USA 113, 1660–1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, J., and Plenio, M.B. (2013). Chemical compass model for avian magnetoreception as a quantum coherent device. Phys Rev Lett 111, 2305031304.4143.

    Google Scholar 

  • Cashmore, A.R., Jarillo, J.A., Wu, Y.J., and Liu, D. (1999). Cryptochromes: blue light receptors for plants and animals. Science 284, 760–765.

    Article  CAS  PubMed  Google Scholar 

  • Ceriani, M.F., Darlington, T.K., Staknis, D., Más, P., Petti, A.A., Weitz, C.J., and Kay, S.A. (1999). Light-dependent sequestration of timeless by cryptochrome. Science 285, 553–556.

    Article  CAS  PubMed  Google Scholar 

  • Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., Essen, L.O., van der Horst, G.T.J., Batschauer, A., and Ahmad, M. (2011). The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62, 335–364.

    Article  CAS  PubMed  Google Scholar 

  • Etoc, F., Lisse, D., Bellaiche, Y., Piehler, J., Coppey, M., and Dahan, M. (2013). Subcellular control of Rac-GTPase signalling by magnetogenetic manipulation inside living cells. Nat Nanotech 8, 193–198.

    Article  CAS  Google Scholar 

  • Etoc, F., Vicario, C., Lisse, D., Siaugue, J.M., Piehler, J., Coppey, M., and Dahan, M. (2015). Magnetogenetic control of protein gradients inside living cells with high spatial and temporal resolution. Nano Lett 15, 3487–3494.

    Article  CAS  PubMed  Google Scholar 

  • Foley, L.E., Gegear, R.J., and Reppert, S.M. (2011). Human cryptochrome exhibits light-dependent magnetosensitivity. Nat Commun 2, 356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gegear, R.J., Casselman, A., Waddell, S., and Reppert, S.M. (2008). Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gegear, R.J., Foley, L.E., Casselman, A., and Reppert, S.M. (2010). Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463, 804–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin, E.A., Staknis, D. and Weitz, C.J. (1999). Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286, 768–771.

    Article  CAS  PubMed  Google Scholar 

  • Haug, M.F., Gesemann, M., Lazovic, V., and Neuhauss, S.C.F. (2015). Eumetazoan cryptochrome phylogeny and evolution. Genome Biol Evol 7, 601–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Häusser, M. (2014). Optogenetics: the age of light. Nat Meth 11, 1012–1014.

    Article  Google Scholar 

  • Heasman, J. (2002). Morpholino oligos: making sense of antisense? Dev Biol 243, 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Hong, N., Li, Z. and Hong, Y. (2011). Fish stem cell cultures. Int J Biol Sci 7, 392–402.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong, Y., Liu, T., Zhao, H., Xu, H., Wang, W., Liu, R., Chen, T., Deng, J., and Gui, J. (2004). Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proc Natl Acad Sci USA 101, 8011–8016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamatsu, T. (2004). Stages of normal development in the medaka Oryzias latipes. Mechan Dev 121, 605–618.

    Article  CAS  Google Scholar 

  • Johnsen, S., and Lohmann, K.J. (2008). Magnetoreception in animals feature article. Physics Today 61, 29.

    Article  CAS  Google Scholar 

  • Kobayashi, Y., Ishikawa, T., Hirayama, J., Daiyasu, H., Kanai, S., Toh, H., Fukuda, I., Tsujimura, T., Terada, N., Kamei, Y., Yuba, S., Iwai, S., and Todo, T. (2000). Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish. Genes Cells 5, 725–738.

    Article  CAS  PubMed  Google Scholar 

  • Kringelbach, M.L., Jenkinson, N., Owen, S.L.F., and Aziz, T.Z. (2007). Translational principles of deep brain stimulation. Nat Rev Neurosci 8, 623–635.

    Article  CAS  PubMed  Google Scholar 

  • Kume, K., Zylka, M.J., Sriram, S., Shearman, L.P., Weaver, D.R., Jin, X., Maywood, E.S., Hastings, M.H., and Reppert, S.M. (1999). mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98, 193–205.

    Article  CAS  PubMed  Google Scholar 

  • Liedvogel, M., and Mouritsen, H. (2010). Cryptochromes—a potential magnetoreceptor: what do we know and what do we want to know? J R Soc Interface 7, S147–S162.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Hu, J., Qu, C., Wang, L., Huang, G., Niu, P., Zhong, Z., Hong, F., Wang, G., Postlethwait, J.H., and Wang, H. (2015). Molecular evolution and functional divergence of zebrafish (Danio rerio) cryptochrome genes. Sci Rep 5, 8113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long, X., Ye, J., Zhao, D., and Zhang, S.J. (2015). Magnetogenetics: remote non-invasive magnetic activation of neuronal activity with a magnetoreceptor. Sci Bull 60, 2107–2119.

    Article  CAS  Google Scholar 

  • Möller, A., Sagasser, S., Wiltschko, W., and Schierwater, B. (2004). Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 91, 585–588.

    Article  PubMed  Google Scholar 

  • Maeda, K., Henbest, K.B., Cintolesi, F., Kuprov, I., Rodgers, C.T., Liddell, P.A., Gust, D., Timmel, C.R., and Hore, P.J. (2008). Chemical compass model of avian magnetoreception. Nature 453, 387–390.

    Article  CAS  PubMed  Google Scholar 

  • Mandilaras, K., and Missirlis, F. (2012). Genes for iron metabolism influence circadian rhythms in Drosophila melanogaster. Metallomics 4, 928–936.

    Article  CAS  PubMed  Google Scholar 

  • Mohseni, M., Omar, Y., Engel, G.S. and Plenio, M.B. (2014). Quantum Effects in Biology. (Cambridge: Cambridge University Press).

    Book  Google Scholar 

  • Nilsson, R., Schultz, I.J., Pierce, E.L., Soltis, K.A., Naranuntarat, A., Ward, D.M., Baughman, J.M., Paradkar, P.N., Kingsley, P.D., Culotta, V.C., Kaplan, J., Palis, J., Paw, B.H., and Mootha, V.K. (2009). Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab 10, 119–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveri, P., Fortunato, A.E., Petrone, L., Ishikawa-Fujiwara, T., Kobayashi, Y., Todo, T., Antonova, O., Arboleda, E., Zantke, J., Tessmar-Raible, K., and Falciatore, A. (2014). The cryptochrome/photolyase family in aquatic organisms. Mar Genomics 14, 23–37.

    Article  PubMed  Google Scholar 

  • Phillips, J.B., Muheim, R., and Jorge, P.E. (2010). A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? J Exp Biol 213, 3247–3255.

    Article  PubMed  Google Scholar 

  • Qin, S., Yin, H., Yang, C., Dou, Y., Liu, Z., Zhang, P., Yu, H., Huang, Y., Feng, J., Hao, J., Hao, J., Deng, L., Yan, X., Dong, X., Zhao, Z., Jiang, T., Wang, H.W., Luo, S.J., and Xie, C. (2016). A magnetic protein biocompass. Nat Mater 15, 217–226.

    Article  CAS  PubMed  Google Scholar 

  • Ritz, T., Adem, S., and Schulten, K. (2000). A model for photoreceptorbased magnetoreception in birds. Biophysical J 78, 707–718.

    Article  CAS  Google Scholar 

  • Schulten, K., and Weller, A. (1978). Exploring fast electron transfer processes by magnetic fields.

  • Biophys J 24, 295–305.

  • Schwartz, C.J., Giel, J.L., Patschkowski, T., Luther, C., Ruzicka, F.J., Beinert, H., and Kiley, P.J. (2001). IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc Natl Acad Sci USA 98, 14895–14900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soderlund, C., Bomhoff, M., and Nelson, W.M. (2011). SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res 39, e68–e68.

    Article  Google Scholar 

  • Stanley, S.A., Kelly, L., Latcha, K.N., Schmidt, S.F., Yu, X., Nectow, A.R., Sauer, J., Dyke, J.P., Dordick, J.S., and Friedman, J.M. (2016). Bidirectional electromagnetic control of the hypothalamus regulates feeding and metabolism. Nature 531, 647–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley, S.A., Sauer, J., Kane, R.S., Dordick, J.S., and Friedman, J.M. (2015). Remote regulation of glucose homeostasis in mice using genetically encoded nanoparticles. Nat Med 21, 92–98.

    Article  CAS  PubMed  Google Scholar 

  • Thoss, F., Bartsch, B., Fritzsche, B., Tellschaft, D., and Thoss, M. (2000). The magnetic field sensitivity of the human visual system shows resonance and compass characteristic. J Comp Physiol A 186, 1007–1010.

    Article  CAS  PubMed  Google Scholar 

  • Thoss, F., Bartsch, B., Tellschaft, D., and Thoss, M. (2002). The light sensitivity of the human visual system depends on the direction of view. J Comp Physiol A 188, 235–237.

    Article  CAS  Google Scholar 

  • Todo, T. (1999). Functional diversity of the DNA photolyase/blue light receptor family. Mutation Res/DNA Repair 434, 89–97.

    Article  CAS  Google Scholar 

  • Todo, T., Ryo, H., Yamamoto, K., Toh, H., Inui, T., Ayaki, H., Nomura, T., and Ikenaga, M. (1996). Similarity among the Drosophila (6-4)photolyase, a human photolyase homolog, and the DNA photolyase-bluelight photoreceptor family. Science 272, 109–112.

    Article  CAS  PubMed  Google Scholar 

  • Todo, T., Takemori, H., Ryo, H., Ihara, M., Matsunaga, T., Nikaido, O., Sato, K., and Nomura, T. (1993). A new photoreactivating enzyme that specifically repairs ultraviolet light-induced (6-4)photoproducts. Nature 361, 371–374.

    Article  CAS  PubMed  Google Scholar 

  • Vinella, D., Brochier-Armanet, C., Loiseau, L., Talla, E., and Barras, F. (2009). Iron-sulfur (Fe/S) protein biogenesis: phylogenomic and genetic studies of A-Type carriers. PLoS Genet 5, e1000497.

    Article  Google Scholar 

  • Wheeler, M.A., Smith, C.J., Ottolini, M., Barker, B.S., Purohit, A.M., Grippo, R.M., Gaykema, R.P., Spano, A.J., Beenhakker, M.P., Kucenas, S., Patel, M.K., Deppmann, C.D., and Güler, A.D. (2016). Genetically targeted magnetic control of the nervous system. Nat Neurosci 19, 756–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wichmann, T., and Delong, M.R. (2006). Deep brain stimulation for neurologic and neuropsychiatric disorders. Neuron 52, 197–204.

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko, W., and Wiltschko, R. (1988). Magnetic orientation in birds. In: R.F. Johnston, ed. Current Ornithology. (Berlin: Springer), pp. 67–121.

    Chapter  Google Scholar 

  • Wiltschko, W., and Wiltschko, R. (2005). Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191, 675–693.

    Article  Google Scholar 

  • Yuan, Q., Metterville, D., Briscoe, A.D., and Reppert, S.M. (2007). Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol 24, 948–955.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, F., Vierock, J., Yizhar, O., Fenno, L.E., Tsunoda, S., Kianianmomeni, A., Prigge, M., Berndt, A., Cushman, J., Polle, J., Magnuson, J., Hegemann, P., and Deisseroth, K. (2011). The microbial opsin family of optogenetic tools. Cell 147, 1446–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, L., Cash, V.L., Flint, D.H. and Dean, D.R. (1998). Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273, 13264–13272.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z., Peng, X., Chen, J., Wu, X., Wang, Y., and Hong, Y. (2016). Identification of zebrafish magnetoreceptor and cryptochrome homologs. Sci China Life Sci doi: 10.1007/s11427-016-0195-x.

  • Zhu, H., Sauman, I., Yuan, Q., Casselman, A., Emery-Le, M., Emery, P., and Reppert, S.M. (2008). Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol 6, e4.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Singapore (NRF-CRP7-2010-03).

Author information

Authors and Affiliations

  1. Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore

    Yunzhi Wang, Jianbin Chen, Feng Zhu & Yunhan Hong

Authors
  1. Yunzhi Wang
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Jianbin Chen
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. Feng Zhu
    View author publications

    You can also search for this author inPubMed Google Scholar

  4. Yunhan Hong
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Yunhan Hong.

Additional information

This article is published with open access at link.springer.com

Electronic supplementary material

Supplementary material, approximately 772 KB.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, J., Zhu, F. et al. Identification of medaka magnetoreceptor and cryptochromes. Sci. China Life Sci. 60, 271–278 (2017). https://doi.org/10.1007/s11427-016-0266-5

Download citation

  • Received: 13 September 2016

  • Accepted: 16 October 2016

  • Published: 17 November 2016

  • Issue Date: March 2017

  • DOI: https://doi.org/10.1007/s11427-016-0266-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • magnetoreception
  • MagR
  • cryptochrome
  • magnetogenetics
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature