Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Science China Life Sciences
  3. Article

An update: the role of Nephrin inside and outside the kidney

  • Review
  • Open access
  • Published: 29 April 2015
  • Volume 58, pages 649–657, (2015)
  • Cite this article
Download PDF

You have full access to this open access article

Science China Life Sciences Aims and scope Submit manuscript
An update: the role of Nephrin inside and outside the kidney
Download PDF
  • XueZhu Li1 &
  • John Cijiang He2 
  • 2596 Accesses

  • Explore all metrics

Abstract

Nephrin is a key molecule in podocytes to maintain normal slit diaphragm structure. Nephin interacts with many other podocyte and slit diaphragm protein and also mediates important cell signaling pathways in podocytes. Loss of nephrin during the development leads to the congenital nephrotic syndrome in children. Reduction of nephrin expression is often observed in adult kidney diseases including diabetic nephropathy and HIV-associated nephropathy. The critical role of nephrin has been confirmed by different animal models with nephrin knockout and knockdown. Recent studies demonstrate that knockdown of nephrin expression in adult mice aggravates the progression of unilateral nephrectomy and Adriamycin-induced kidney disease. In addition to its critical role in maintaining normal glomerular filtration unit in the kidney, nephrin is also expressed in other organs. However, the exact role of nephrin in kidney and extra-renal organs has not been well characterized. Future studies are required to determine whether nephrin could be developed as a drug target to treat patients with kidney disease.

Article PDF

Download to read the full article text

Similar content being viewed by others

Loss of CLDN5 in podocytes deregulates WIF1 to activate WNT signaling and contributes to kidney disease

Article Open access 24 March 2022

New insight into podocyte slit diaphragm, a therapeutic target of proteinuria

Article Open access 04 February 2020

FAT1 mutations cause a glomerulotubular nephropathy

Article Open access 24 February 2016
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, Ruotsalainen V, Morita T, Nissinen M, Herva R, Kashtan CE, Peltonen L, Holmberg C, Olsen A, Tryggvason K. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell 1998, 1: 575–582

    Article  CAS  PubMed  Google Scholar 

  2. Lenkkeri U, Mannikko M, McCready P, Lamerdin J, Gribouval O, Niaudet PM, Antignac CK, Kashtan CE, Homberg C, Olsen A, Kestila M, Tryggvason K. Structure of the gene for congenital nephrotic syndrome of the finnish type (NPHS1) and characterization of mutations. Am J Hum Genet, 1999, 64: 51–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Grahammer F, Schell C, Huber TB. The podocyte slit diaphragm—from a thin grey line to a complex signalling hub. Nat Rev Nephrol, 2013, 9: 587–598

    Article  CAS  PubMed  Google Scholar 

  4. Brummendorf T, Rathjen FG. Cell adhesion molecules 1: immunoglobulin superfamily. Protein Profile, 1995, 2: 963–1108

    CAS  PubMed  Google Scholar 

  5. Chothia C, Jones EY. The molecular structure of cell adhesion molecules. Annu Rev Biochem, 1997, 66: 823–862

    Article  CAS  PubMed  Google Scholar 

  6. Fahrig T, Landa C, Pesheva P, Kuhn K, Schachner M. Characterization of binding properties of the myelin-associated glycoprotein to extracellular matrix constituents. EMBO J, 1987, 6: 2875–2883

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Tryggvason K. Unraveling the mechanisms of glomerular ultrafiltration: nephrin, a key component of the slit diaphragm. J Am Soc Nephrol, 1999, 10: 2440–2445

    CAS  PubMed  Google Scholar 

  8. Ahola H, Wang SX, Luimula P, Solin ML, Holzman LB, Holthofer H. Cloning and expression of the rat nephrin homolog. Am J Pathol, 1999, 155: 907–913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Topham PS, Kawachi H, Haydar SA, Chugh S, Addona TA, Charron KB, Holzman LB, Shia M, Shimizu F, Salant DJ. Nephritogenic mAb 5-1-6 is directed at the extracellular domain of rat nephrin. J Clin Invest, 1999, 104: 1559–1566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Yan K, Khoshnoodi J, Ruotsalainen V, Tryggvason K. N-linked glycosylation is critical for the plasma membrane localization of nephrin. J Am Soc Nephrol, 2002, 13: 1385–1389

    Article  CAS  PubMed  Google Scholar 

  11. Luimula P, Aaltonen P, Ahola H, Palmen T, Holthofer H. Alternatively spliced nephrin in experimental glomerular disease of the rat. Pediatr Res, 2000, 48: 759–762

    Article  CAS  PubMed  Google Scholar 

  12. Beltcheva O, Kontusaari S, Fetissov S, Putaala H, Kilpelainen P, Hokfelt T, Tryggvason K. Alternatively used promoters and distinct elements direct tissue-specific expression of nephrin. J Am Soc Nephrol, 2003, 14: 352–358

    Article  CAS  PubMed  Google Scholar 

  13. Putaala H, Soininen R, Kilpelainen P, Wartiovaara J, Tryggvason K. The murine nephrin gene is specifically expressed in kidney, brain and pancreas: inactivation of the gene leads to massive proteinuria and neonatal death. Hum Mol Genet, 2001, 10: 1–8

    Article  CAS  PubMed  Google Scholar 

  14. Ihalmo P, Rinta-Valkama J, Mai P, Astrom E, Palmen T, Pham TT, Floss T, Holthofer H. Molecular cloning and characterization of an endogenous antisense transcript of Nphs1. Genomics, 2004, 83: 1134–1140

    Article  CAS  PubMed  Google Scholar 

  15. Ihalmo P, Palmen T, Ahola H, Valtonen E, Holthofer H. Filtrin is a novel member of nephrin-like proteins. Biochem Biophys Res Commun, 2003, 300: 364–370

    Article  CAS  PubMed  Google Scholar 

  16. Ichimura K, Fukuyo Y, Nakamura T, Powell R, Sakai T, Janknecht R, Obara T. Developmental localization of nephrin in zebrafish and medaka pronephric glomerulus. J Histochem Cytochem, 2013, 61: 313–324

    Article  PubMed Central  PubMed  Google Scholar 

  17. Casotti G, Braun EJ. Functional morphology of the glomerular filtration barrier of Gallus gallus. J Morphol, 1996, 228: 327–334

    Article  CAS  PubMed  Google Scholar 

  18. Volker LA, Petry M, Abdelsabour-Khalaf M, Schweizer H, Yusuf F, Busch T, Schermer B, Benzing T, Brand-Saberi B, Kretz O, Hohne M, Kispert A. Comparative analysis of Neph gene expression in mouse and chicken development. Histochem Cell Biol, 2012, 137: 355–366

    Article  PubMed Central  PubMed  Google Scholar 

  19. Done SC, Takemoto M, He L, Sun Y, Hultenby K, Betsholtz C, Tryggvason K. Nephrin is involved in podocyte maturation but not survival during glomerular development. Kidney Int, 2008, 73: 697–704

    Article  CAS  PubMed  Google Scholar 

  20. Palmen T, Lehtonen S, Ora A, Kerjaschki D, Antignac C, Lehtonen E, Holthofer H. Interaction of endogenous nephrin and CD2-associated protein in mouse epithelial M-1 cell line. J Am Soc Nephrol, 2002, 13: 1766–1772

    Article  CAS  PubMed  Google Scholar 

  21. Shih NY, Li J, Cotran R, Mundel P, Miner JH, Shaw AS. CD2AP localizes to the slit diaphragm and binds to nephrin via a novel C-terminal domain. Am J Pathol, 2001, 159: 2303–2308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Huber TB, Hartleben B, Kim J, Schmidts M, Schermer B, Keil A, Egger L, Lecha RL, Borner C, Pavenstadt H, Shaw AS, Walz G, Benzing T. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol Cell Biol, 2003, 23: 4917–4928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Tossidou I, Niedenthal R, Klaus M, Teng B, Worthmann K, King BL, Peterson KJ, Haller H, Schiffer M. CD2AP regulates SUMOylation of CIN85 in podocytes. Mol Cell Biol, 2012, 32: 1068–1079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Tossidou I, Teng B, Drobot L, Meyer-Schwesinger C, Worthmann K, Haller H, Schiffer M. CIN85/RukL is a novel binding partner of nephrin and podocin and mediates slit diaphragm turnover in podocytes. J Biol Chem, 2010, 285: 25285–25295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, Miner JH, Shaw AS. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science, 1999, 286: 312–315

    Article  CAS  PubMed  Google Scholar 

  26. Li C, Ruotsalainen V, Tryggvason K, Shaw AS, Miner JH. CD2AP is expressed with nephrin in developing podocytes and is found widely in mature kidney and elsewhere. Am J Physiol Renal Physiol, 2000, 279: F785–792

    CAS  PubMed  Google Scholar 

  27. Huber TB, Kottgen M, Schilling B, Walz G, Benzing T. Interaction with podocin facilitates nephrin signaling. J Biol Chem, 2001, 276: 41543–41546

    Article  CAS  PubMed  Google Scholar 

  28. Schwarz K, Simons M, Reiser J, Saleem MA, Faul C, Kriz W, Shaw AS, Holzman LB, Mundel P. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest, 2001, 108: 1621–1629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Roselli S, Heidet L, Sich M, Henger A, Kretzler M, Gubler MC, Antignac C. Early glomerular filtration defect and severe renal disease in podocin-deficient mice. Mol Cell Biol, 2004, 24: 550–560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Aucella F, De Bonis P, Gatta G, Muscarella LA, Vigilante M, di Giorgio G, D’Errico M, Zelante L, Stallone C, Bisceglia L. Molecular analysis of NPHS2 and ACTN4 genes in a series of 33 Italian patients affected by adult-onset nonfamilial focal segmental glomerulosclerosis. Nephron Clin Pract, 2005, 99: c31–36

    Article  CAS  PubMed  Google Scholar 

  31. Serizawa S, Miyamichi K, Takeuchi H, Yamagishi Y, Suzuki M, Sakano H. A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting. Cell, 2006, 127: 1057–1069

    Article  CAS  PubMed  Google Scholar 

  32. Harita Y, Kurihara H, Kosako H, Tezuka T, Sekine T, Igarashi T, Hattori S. Neph1, a component of the kidney slit diaphragm, is tyrosine-phosphorylated by the Src family tyrosine kinase and modulates intracellular signaling by binding to Grb2. J Biol Chem, 2008, 283: 9177–9186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Gerke P, Huber TB, Sellin L, Benzing T, Walz G. Homodimerization and heterodimerization of the glomerular podocyte proteins nephrin and NEPH1. J Am Soc Nephrol, 2003, 14: 918–926

    Article  CAS  PubMed  Google Scholar 

  34. Barletta GM, Kovari IA, Verma RK, Kerjaschki D, Holzman LB. Nephrin and Neph1 co-localize at the podocyte foot process intercellular junction and form cis hetero-oligomers. J Biol Chem, 2003, 278: 19266–19271

    Article  CAS  PubMed  Google Scholar 

  35. Otaki Y, Miyauchi N, Higa M, Takada A, Kuroda T, Gejyo F, Shimizu F, Kawachi H. Dissociation of NEPH1 from nephrin is involved in development of a rat model of focal segmental glomerulosclerosis. Am J Physiol Renal Physiol, 2008, 295: F1376–1387

    Article  CAS  PubMed  Google Scholar 

  36. Verma R, Kovari I, Soofi A, Nihalani D, Patrie K, Holzman LB. Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J Clin Invest, 2006, 116: 1346–1359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Jones N, Blasutig IM, Eremina V, Ruston JM, Bladt F, Li H, Huang H, Larose L, Li SS, Takano T, Quaggin SE, Pawson T. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature, 2006, 440: 818–823

    Article  CAS  PubMed  Google Scholar 

  38. Donoviel DB, Freed DD, Vogel H, Potter DG, Hawkins E, Barrish JP, Mathur BN, Turner CA, Geske R, Montgomery CA, Starbuck M, Brandt M, Gupta A, Ramirez-Solis R, Zambrowicz BP, Powell DR. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol, 2001, 21: 4829–4836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sellin L, Huber TB, Gerke P, Quack I, Pavenstadt H, Walz G. NEPH1 defines a novel family of podocin interacting proteins. FASEB J, 2003, 17: 115–117

    CAS  PubMed  Google Scholar 

  40. Huber TB, Schmidts M, Gerke P, Schermer B, Zahn A, Hartleben B, Sellin L, Walz G, Benzing T. The carboxyl terminus of Neph family members binds to the PDZ domain protein zonula occludens-1. J Biol Chem, 2003, 278: 13417–13421

    Article  CAS  PubMed  Google Scholar 

  41. Gerke P, Sellin L, Kretz O, Petraschka D, Zentgraf H, Benzing T, Walz G. NEPH2 is located at the glomerular slit diaphragm, interacts with nephrin and is cleaved from podocytes by metalloproteinases. J Am Soc Nephrol, 2005, 16: 1693–1702

    Article  CAS  PubMed  Google Scholar 

  42. Wang H, Lehtonen S, Chen YC, Heikkila E, Panula P, Holthofer H. Neph3 associates with regulation of glomerular and neural development in zebrafish. Differentiation, 2012, 83: 38–46

    Article  CAS  PubMed  Google Scholar 

  43. Rincon-Choles H, Vasylyeva TL, Pergola PE, Bhandari B, Bhandari K, Zhang JH, Wang W, Gorin Y, Barnes JL, Abboud HE. ZO-1 expression and phosphorylation in diabetic nephropathy. Diabetes, 2006, 55: 894–900

    Article  CAS  PubMed  Google Scholar 

  44. Reiser J, Kriz W, Kretzler M, Mundel P. The glomerular slit diaphragm is a modified adherens junction. J Am Soc Nephrol, 2000, 11: 1–8

    CAS  PubMed  Google Scholar 

  45. Patrakka J, Kestila M, Wartiovaara J, Ruotsalainen V, Tissari P, Lenkkeri U, Mannikko M, Visapaa I, Holmberg C, Rapola J, Tryggvason K, Jalanko H. Congenital nephrotic syndrome (NPHS1): features resulting from different mutations in Finnish patients. Kidney Int, 2000, 58: 972–980

    Article  CAS  PubMed  Google Scholar 

  46. Kaplan JM, Kim SH, North KN, Rennke H, Correia LA, Tong HQ, Mathis BJ, Rodriguez-Perez JC, Allen PG, Beggs AH, Pollak MR. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat Genet, 2000, 24: 251–256

    Article  CAS  PubMed  Google Scholar 

  47. Michaud JL, Lemieux LI, Dube M, Vanderhyden BC, Robertson SJ, Kennedy CR. Focal and segmental glomerulosclerosis in mice with podocyte-specific expression of mutant alpha-actinin-4. J Am Soc Nephrol, 2003, 14: 1200–1211

    Article  CAS  PubMed  Google Scholar 

  48. Fan Q, Xing Y, Ding J, Guan N, Zhang J. The relationship among nephrin, podocin, CD2AP, and alpha-actinin might not be a true ‘interaction’ in podocyte. Kidney Int, 2006, 69: 1207–1215

    Article  CAS  PubMed  Google Scholar 

  49. Faul C, Asanuma K, Yanagida-Asanuma E, Kim K, Mundel P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol, 2007, 17: 428–437

    Article  CAS  PubMed  Google Scholar 

  50. New LA, Martin CE, Jones N. Advances in slit diaphragm signaling. Curr Opin Nephrol Hypertens, 2014, 23: 420–430

    Article  PubMed  Google Scholar 

  51. Verma R, Wharram B, Kovari I, Kunkel R, Nihalani D, Wary KK, Wiggins RC, Killen P, Holzman LB. Fyn binds to and phosphorylates the kidney slit diaphragm component Nephrin. J Biol Chem, 2003, 278: 20716–20723

    Article  CAS  PubMed  Google Scholar 

  52. New LA, Keyvani Chahi A, Jones N. Direct regulation of nephrin tyrosine phosphorylation by Nck adaptor proteins. J Biol Chem, 2013, 288: 1500–1510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Quack I, Woznowski M, Potthoff SA, Palmer R, Konigshausen E, Sivritas S, Schiffer M, Stegbauer J, Vonend O, Rump LC, Sellin L. PKC alpha mediates beta-arrestin2-dependent nephrin endocytosis in hyperglycemia. J Biol Chem, 2011, 286: 12959–12970

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Tossidou I, Teng B, Menne J, Shushakova N, Park JK, Becker JU, Modde F, Leitges M, Haller H, Schiffer M. Podocytic PKC-alpha is regulated in murine and human diabetes and mediates nephrin endocytosis. PLoS One, 2010, 5: e10185

    Article  PubMed Central  PubMed  Google Scholar 

  55. Satoh D, Hirose T, Harita Y, Daimon C, Harada T, Kurihara H, Yamashita A, Ohno S. aPKClambda maintains the integrity of the glomerular slit diaphragm through trafficking of nephrin to the cell surface. J Biochem, 2014, 156: 115–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Harita Y, Kurihara H, Kosako H, Tezuka T, Sekine T, Igarashi T, Ohsawa I, Ohta S, Hattori S. Phosphorylation of nephrin triggers Ca2+ signaling by recruitment and activation of phospholipase C-{gamma}1. J Biol Chem, 2009, 284: 8951–8962

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Fan X, Li Q, Pisarek-Horowitz A, Rasouly HM, Wang X, Bonegio RG, Wang H, McLaughlin M, Mangos S, Kalluri R, Holzman LB, Drummond IA, Brown D, Salant DJ, Lu W. Inhibitory effects of Robo2 on nephrin: a crosstalk between positive and negative signals regulating podocyte structure. Cell Rep, 2012, 2: 52–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Huttunen NP. Congenital nephrotic syndrome of Finnish type. Study of 75 patients. Arch Dis Child, 1976, 51: 344–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Holmberg C, Antikainen M, Ronnholm K, Ala Houhala M, Jalanko H. Management of congenital nephrotic syndrome of the Finnish type. Pediatr Nephrol, 1995, 9: 87–93

    Article  CAS  PubMed  Google Scholar 

  60. Kaukinen A, Kuusniemi AM, Helin H, Jalanko H. Changes in glomerular mesangium in kidneys with congenital nephrotic syndrome of the Finnish type. Pediatr Nephrol, 2010, 25: 867–875

    Article  PubMed  Google Scholar 

  61. Patrakka J, Ruotsalainen V, Reponen P, Qvist E, Laine J, Holmberg C, Tryggvason K, Jalanko H. Recurrence of nephrotic syndrome in kidney grafts of patients with congenital nephrotic syndrome of the Finnish type: role of nephrin. Transplantation, 2002, 73: 394–403

    Article  PubMed  Google Scholar 

  62. Wang SX, Ahola H, Palmen T, Solin ML, Luimula P, Holthofer H. Recurrence of nephrotic syndrome after transplantation in CNF is due to autoantibodies to nephrin. Exp Nephrol, 2001, 9: 327–331

    Article  CAS  PubMed  Google Scholar 

  63. Fukusumi Y, Miyauchi N, Hashimoto T, Saito A, Kawachi H. Therapeutic target for nephrotic syndrome: identification of novel slit diaphragm associated molecules. World J Nephrol, 2014, 3: 77–84

    Article  PubMed Central  PubMed  Google Scholar 

  64. Furness PN, Hall LL, Shaw JA, Pringle JH. Glomerular expression of nephrin is decreased in acquired human nephrotic syndrome. Nephrol Dial Transplant, 1999, 14: 1234–1237

    Article  CAS  PubMed  Google Scholar 

  65. Hulkko J, Patrakka J, Lal M, Tryggvason K, Hultenby K, Wernerson A. Neph1 is reduced in primary focal segmental glomerulosclerosis, minimal change nephrotic syndrome, and corresponding experimental animal models of adriamycin-induced nephropathy and puromycin aminonucleoside nephrosis. Nephron Extra, 2014, 4: 146–154

    Article  PubMed Central  PubMed  Google Scholar 

  66. Huh W, Kim DJ, Kim MK, Kim YG, Oh HY, Ruotsalainen V, Tryggvason K. Expression of nephrin in acquired human glomerular disease. Nephrol Dial Transplant, 2002, 17: 478–484

    Article  CAS  PubMed  Google Scholar 

  67. Kawachi H, Koike H, Kurihara H, Yaoita E, Orikasa M, Shia MA, Sakai T, Yamamoto T, Salant DJ, Shimizu F. Cloning of rat nephrin: expression in developing glomeruli and in proteinuric states. Kidney Int, 2000, 57: 1949–1961

    Article  CAS  PubMed  Google Scholar 

  68. Benigni A, Tomasoni S, Gagliardini E, Zoja C, Grunkemeyer JA, Kalluri R, Remuzzi G. Blocking angiotensin II synthesis/activity preserves glomerular nephrin in rats with severe nephrosis. J Am Soc Nephrol, 2001, 12: 941–948

    CAS  PubMed  Google Scholar 

  69. Luimula P, Ahola H, Wang SX, Solin ML, Aaltonen P, Tikkanen I, Kerjaschki D, Holthofer H. Nephrin in experimental glomerular disease. Kidney Int, 2000, 58: 1461–1468

    Article  CAS  PubMed  Google Scholar 

  70. Zhu B, Li XF, Zhu XL, Lin Y, Zhong S, Zhu CF, Tang XL, Hu YQ, Cheng XX, Wang YJ. ELISA analysis of urinary nephrin and podocalyxin standardized by aquaporin-2 in adult patients with nephrotic syndrome. J Nephrol, 2014, 27: 411–417

    Article  PubMed  Google Scholar 

  71. Patrakka J, Ruotsalainen V, Ketola I, Holmberg C, Heikinheimo M, Tryggvason K, Jalanko H. Expression of nephrin in pediatric kidney diseases. J Am Soc Nephrol, 2001, 12: 289–296

    CAS  PubMed  Google Scholar 

  72. Aaltonen P, Luimula P, Astrom E, Palmen T, Gronholm T, Palojoki E, Jaakkola I, Ahola H, Tikkanen I, Holthofer H. Changes in the expression of nephrin gene and protein in experimental diabetic nephropathy. Lab Invest, 2001, 81: 1185–1190

    Article  CAS  PubMed  Google Scholar 

  73. Bonnet F, Cooper ME, Kawachi H, Allen TJ, Boner G, Cao Z. Irbesartan normalises the deficiency in glomerular nephrin expression in a model of diabetes and hypertension. Diabetologia, 2001, 44: 874–877

    Article  CAS  PubMed  Google Scholar 

  74. Langham RG, Kelly DJ, Cox AJ, Thomson NM, Holthofer H, Zaoui P, Pinel N, Cordonnier DJ, Gilbert RE. Proteinuria and the expression of the podocyte slit diaphragm protein, nephrin, in diabetic nephropathy: effects of angiotensin converting enzyme inhibition. Diabetologia, 2002, 45: 1572–1576

    Article  CAS  PubMed  Google Scholar 

  75. Koop K, Eikmans M, Baelde HJ, Kawachi H, De Heer E, Paul LC, Bruijn JA. Expression of podocyte-associated molecules in acquired human kidney diseases. J Am Soc Nephrol, 2003, 14: 2063–2071

    Article  CAS  PubMed  Google Scholar 

  76. Doublier S, Salvidio G, Lupia E, Ruotsalainen V, Verzola D, Deferrari G, Camussi G. Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II. Diabetes, 2003, 52: 1023–1030

    Article  CAS  PubMed  Google Scholar 

  77. Benigni A, Gagliardini E, Tomasoni S, Abbate M, Ruggenenti P, Kalluri R, Remuzzi G. Selective impairment of gene expression and assembly of nephrin in human diabetic nephropathy. Kidney Int, 2004, 65: 2193–2200

    Article  CAS  PubMed  Google Scholar 

  78. Perysinaki GS, Moysiadis DK, Bertsias G, Giannopoulou I, Kyriacou K, Nakopoulou L, Boumpas DT, Daphnis E. Podocyte main slit diaphragm proteins, nephrin and podocin, are affected at early stages of lupus nephritis and correlate with disease histology. Lupus, 2011, 20: 781–791

    Article  CAS  PubMed  Google Scholar 

  79. Oranskiy SP, Yeliseyeva LN. Urinary excretion of nephrin in rheumatoid arthritis patients with proteinuria. Clin Exp Rheumatol, 2014, 32: 572–574

    PubMed  Google Scholar 

  80. Juhila J, Lassila M, Roozendaal R, Lehtonen E, Messing M, Langer B, Kerjaschki D, Verbeek JS, Holthofer H. Inducible nephrin transgene expression in podocytes rescues nephrin-deficient mice from perinatal death. Am J Pathol, 2010, 176: 51–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Rantanen M, Palmen T, Patari A, Ahola H, Lehtonen S, Astrom E, Floss T, Vauti F, Wurst W, Ruiz P, Kerjaschki D, Holthofer H. Nephrin TRAP mice lack slit diaphragms and show fibrotic glomeruli and cystic tubular lesions. J Am Soc Nephrol, 2002, 13: 1586–1594

    Article  CAS  PubMed  Google Scholar 

  82. Orikasa M, Matsui K, Oite T, Shimizu F. Massive proteinuria induced in rats by a single intravenous injection of a monoclonal antibody. J Immunol, 1988, 141: 807–814

    CAS  PubMed  Google Scholar 

  83. Li X, Chuang PY, D’Agati VD, Dai Y, Yacoub R, Fu J, Xu J, Taku O, Premsrirut PK, Holzman LB, He JC. Nephrin Preserves Podocyte Viability and Glomerular Structure and Function in Adult Kidneys. J Am Soc Nephrol, 2015, pii: JASN. 2014040405

    Google Scholar 

  84. Li M, Armelloni S, Ikehata M, Corbelli A, Pesaresi M, Calvaresi N, Giardino L, Mattinzoli D, Nistico F, Andreoni S, Puliti A, Ravazzolo R, Forloni G, Messa P, Rastaldi MP. Nephrin expression in adult rodent central nervous system and its interaction with glutamate receptors. J Pathol, 2011, 225: 118–128

    Article  CAS  PubMed  Google Scholar 

  85. Palmen T, Ahola H, Palgi J, Aaltonen P, Luimula P, Wang S, Jaakkola I, Knip M, Otonkoski T, Holthofer H. Nephrin is expressed in the pancreatic beta cells. Diabetologia, 2001, 44: 1274–1280

    Article  CAS  PubMed  Google Scholar 

  86. Zanone MM, Favaro E, Doublier S, Lozanoska-Ochser B, Deregibus MC, Greening J, Huang GC, Klein N, Cavallo Perin P, Peakman M, Camussi G. Expression of nephrin by human pancreatic islet endothelial cells. Diabetologia, 2005, 48: 1789–1797

    Article  CAS  PubMed  Google Scholar 

  87. Kuusniemi AM, Kestila M, Patrakka J, Lahdenkari AT, Ruotsalainen V, Holmberg C, Karikoski R, Salonen R, Tryggvason K, Jalanko H. Tissue expression of nephrin in human and pig. Pediatr Res, 2004, 55: 774–781

    Article  CAS  PubMed  Google Scholar 

  88. Liu L, Aya K, Tanaka H, Shimizu J, Ito S, Seino Y. Nephrin is an important component of the barrier system in the testis. Acta Med Okayama, 2001, 55: 161–165

    CAS  PubMed  Google Scholar 

  89. Astrom E, Rinta-Valkama J, Gylling M, Ahola H, Miettinen A, Timonen T, Holthofer H. Nephrin in human lymphoid tissues. Cell Mol Life Sci, 2006, 63: 498–504

    Article  CAS  PubMed  Google Scholar 

  90. Kroese FG, Wubbena AS, Seijen HG, Nieuwenhuis P. Germinal centers develop oligoclonally. Eur J Immunol, 1987, 17: 1069–1072

    Article  CAS  PubMed  Google Scholar 

  91. Wagner N, Morrison H, Pagnotta S, Michiels JF, Schwab Y, Tryggvason K, Schedl A, Wagner KD. The podocyte protein nephrin is required for cardiac vessel formation. Hum Mol Genet, 2011, 20: 2182–2194

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Nephrology; Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China

    XueZhu Li

  2. Department of Medicine/Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA

    John Cijiang He

Authors
  1. XueZhu Li
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. John Cijiang He
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to John Cijiang He.

Additional information

This article is published with open access at link.springer.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., He, J.C. An update: the role of Nephrin inside and outside the kidney. Sci. China Life Sci. 58, 649–657 (2015). https://doi.org/10.1007/s11427-015-4844-1

Download citation

  • Received: 23 December 2014

  • Accepted: 27 February 2015

  • Published: 29 April 2015

  • Issue Date: July 2015

  • DOI: https://doi.org/10.1007/s11427-015-4844-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Nephrin
  • podocytes
  • kidney
  • slit diaphragm
  • proteinuria
  • cell signaling pathway
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature