Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Science China Life Sciences
  3. Article

The role of miR156 in developmental transitions in Nicotiana tabacum

  • Research Paper
  • Special Topic: Plant Biology: Chromatin, Small RNA and Signaling
  • Open access
  • Published: 11 February 2015
  • Volume 58, pages 253–260, (2015)
  • Cite this article
Download PDF

You have full access to this open access article

Science China Life Sciences Aims and scope Submit manuscript
The role of miR156 in developmental transitions in Nicotiana tabacum
Download PDF
  • TianQi Zhang1,2,
  • JiaWei Wang1 &
  • ChuanMiao Zhou1 
  • 1919 Accesses

  • 36 Citations

  • 7 Altmetric

  • Explore all metrics

Abstract

Plants undergo a series of developmental transitions during their life cycle. After seed germination, plants pass through two distinct phases: the vegetative phase in which leaves are produced and the reproductive phase in which flowering occurs. Based on the reproductive competence and morphological changes, the vegetative phase can be further divided into juvenile and adult phases. Here, we demonstrate that the difference between juvenile and adult phase of Nicotiana tabacum is characterized by the changes in leaf size, leaf shape as well as the number of leaf epidermal hairs (trichomes). We further show that miR156, an age-regulated microRNA, regulates juvenile-to-adult phase transition in N. tabacum. Overexpression of miR156 results in delayed juvenile-to-adult transition and flowering. Together, our results support an evolutionarily conserved role of miR156 in plant developmental transitions.

Article PDF

Download to read the full article text

Similar content being viewed by others

Morphological changes during juvenile-to-adult phase transition in sorghum

Article 29 July 2019

Cytokinin regulates vegetative phase change in Arabidopsis thaliana through the miR172/TOE1-TOE2 module

Article Open access 05 October 2021

Flowering in Chenopodium and Related Amaranths

Chapter © 2021
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Baurle I, Dean C. The timing of developmental transitions in plants. Cell, 2006, 125: 655–664

    Article  PubMed  Google Scholar 

  2. Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci, 2011, 68: 2013–2037

    Article  PubMed  Google Scholar 

  3. Andres F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet, 2012, 13: 627–639

    Article  PubMed  Google Scholar 

  4. Amasino RM, Michaels SD. The timing of flowering. Plant Physiol, 2010, 154: 516–520

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kobayashi Y, Weigel D. Move on up, it’s time for change-mobile signals controlling photoperiod-dependent flowering. Genes Dev, 2007, 21: 2371–2384

    Article  PubMed  Google Scholar 

  6. Poethig RS. Phase change and the regulation of developmental timing in plants. Science, 2003, 301: 334–336

    Article  PubMed  Google Scholar 

  7. Poethig RS. Vegetative phase change and shoot maturation in plants. Curr Top Dev Biol, 2013, 105: 125–152

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huijser P, Schmid M. The control of developmental phase transitions in plants. Development, 2011, 138: 4117–4129

    Article  PubMed  Google Scholar 

  9. Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell, 2013, 25: 2383–2399

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bartel DP. MicroRNAs: target recognition and regulatory functions. 2009. Cell, 136: 215–233

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev, 2007, 21: 1190–1203

    Article  PubMed  PubMed Central  Google Scholar 

  12. Molnar A, Schwach F, Studholme DJ, Thuenemann EC, Baulcombe DC. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature, 2007, 447: 1126–1129

    Article  PubMed  Google Scholar 

  13. Li J, Wu Y, Qi Y. MicroRNAs in a multicellular green alga Volvox carteri. Sci China Life Sci, 2014, 57: 36–45

    Article  PubMed  Google Scholar 

  14. Poethig RS. Small RNAs and developmental timing in plants. Curr Opin Genet Dev, 2009, 19: 374–378

    Article  PubMed  PubMed Central  Google Scholar 

  15. Poethig RS. The past, present, and future of vegetative phase change. Plant Physiol, 2010, 154: 541–544

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L. SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development. J Integr Plant Biol, 2010, 52: 946–951

    Article  PubMed  Google Scholar 

  17. Wang Y, Wu F, Bai J, He Y. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Plant Biotechnol J, 2014, 12: 312–321

    Article  PubMed  Google Scholar 

  18. Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell, 2009, 138: 750–759

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhou CM, Zhang TQ, Wang X, Yu S, Lian H, Tang H, Feng ZY, Zozomova-Lihova J, Wang JW. Molecular basis of age-dependent vernalization in Cardamine flexuosa. Science, 2013, 340: 1097–1100

    Article  PubMed  Google Scholar 

  20. Wang JW, Park MY, Wang LJ, Koo Y, Chen XY, Weigel D, Poethig RS. miRNA control of vegetative phase change in trees. PLoS Genet, 2011, 7: e1002012

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bergonzi S, Albani MC, Ver Loren van Themaat E, Nordstrom KJ, Wang R, Schneeberger K, Moerland PD, Coupland G. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina. Science, 2013, 340: 1094–1097

    Article  PubMed  Google Scholar 

  22. Chuck G, Cigan AM, Saeteurn K, Hake S. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet, 2007, 39: 544–549

    Article  PubMed  Google Scholar 

  23. Eviatar-Ribak T, Shalit-Kaneh A, Chappell-Maor L, Amsellem Z, Eshed Y, Lifschitz E. A cytokinin-activating enzyme promotes tuber formation in tomato. Curr Biol, 2013, 23: 1057–1064

    Article  PubMed  Google Scholar 

  24. Wang JW, Czech B, Weigel D. miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell, 2009, 138: 738–749

    Article  PubMed  Google Scholar 

  25. Wu G, Poethig RS. Poethig, Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development, 2006, 133: 3539–3547

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yu S, Cao L, Zhou CM, Zhang TQ, Lian H, Sun Y, Wu JQ, Huang JR, Wang GD, Wang JW. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLIFE, 2013. 2: e00269

    PubMed  PubMed Central  Google Scholar 

  27. Yang L, Xu M, Koo Y, He J, Poethig RS. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. elife, 2013, 2: e00260

    PubMed  PubMed Central  Google Scholar 

  28. Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, Xiong L. Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiol, 2012, 158: 1382–1394

    Article  PubMed  PubMed Central  Google Scholar 

  29. Xie K, Wu C, Xiong L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol, 2006, 142: 280–293

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cardon G, Hohmann S, Klein J, Nettesheim K, Saedler H, Huijser P. Molecular characterisation of the Arabidopsis SBP-box genes. Gene, 1999, 237: 91–104

    Article  PubMed  Google Scholar 

  31. Xing S, Salinas M, Hohmann S, Berndtgen R, Huijser P. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell, 2010, 22: 3935–3950

    Article  PubMed  PubMed Central  Google Scholar 

  32. Usami T, Horiguchi G, Yano S, Tsukaya H. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development, 2009, 136: 955–964

    Article  PubMed  Google Scholar 

  33. Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol, 2008, 67: 183–195

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rubio-Somoza I, Zhou CM, Confraria A, Martinho C, von Born P, Baena-Gonzalez E, Wang JW, Weigel D. Temporal control of leaf complexity by miRNA-regulated licensing of protein complexes. Curr Biol, 2014, 24: 2714–2719

    Article  PubMed  Google Scholar 

  35. Jung JH, Ju Y, Seo PJ, Lee JH, Park CM. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J, 2011, 69: 577–588

    Article  PubMed  Google Scholar 

  36. Ni Z, Kim ED, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, Chen ZJ. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature, 2009, 457: 327–331

    Article  PubMed  PubMed Central  Google Scholar 

  37. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876–4882

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huson DH. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics, 1998, 14: 68–73

    Article  PubMed  Google Scholar 

  39. Balkunde R, Pesch M, Hulskamp M. Trichome patterning in Arabidopsis thaliana from genetic to molecular models. Curr Top Dev Biol, 2010, 91: 299–321

    Article  PubMed  Google Scholar 

  40. Telfer A, Bollman KM, Poethig RS. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development, 1997, 124: 645–654

    PubMed  Google Scholar 

  41. Shepherd RW, Bass WT, Houtz RL, Wagner GJ. Phylloplanins of tobacco are defensive proteins deployed on aerial surfaces by short glandular trichomes. Plant Cell, 2005, 17: 1851–1861

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wagner GJ. Secreting glandular trichomes: more than just hairs. Plant Physiol, 1991, 96: 675–679

    Article  PubMed  PubMed Central  Google Scholar 

  43. Salinas M, Xing S, Hohmann S, Berndtgen R, Huijser P. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato. Planta, 2012, 235: 1171–1184

    Article  PubMed  Google Scholar 

  44. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet, 2007, 39: 1033–1037

    Article  PubMed  Google Scholar 

  45. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010, 42: 541–544

    Article  PubMed  Google Scholar 

  46. Miura K, Ikeda M, Matsubara A, Song XJ, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet, 2010, 42: 545–549

    Article  PubMed  Google Scholar 

  47. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. Specific effects of microRNAs on the plant transcriptome. Dev Cell, 2005, 8: 517–527

    Article  PubMed  Google Scholar 

  48. Ferreira e Silva GF, Silva EM, Azevedo Mda S, Guivin MA, Ramiro DA, Figueiredo CR, Carrer H, Peres LE, Nogueira FT. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J, 2014, 78: 604–618

    Article  PubMed  Google Scholar 

  49. Wang JW. Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot, 2014, 65: 4723–4730

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. National Key Laboratory of Plant Molecular Genetics (NKLPMG), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences (SIBS), Shanghai, 200032, China

    TianQi Zhang, JiaWei Wang & ChuanMiao Zhou

  2. University of Chinese Academy of Sciences, Shanghai, 200032, China

    TianQi Zhang

Authors
  1. TianQi Zhang
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. JiaWei Wang
    View author publications

    You can also search for this author inPubMed Google Scholar

  3. ChuanMiao Zhou
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to ChuanMiao Zhou.

Additional information

This article is published with open access at link.springer.com

Electronic supplementary material

Supplementary material, approximately 378 KB.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wang, J. & Zhou, C. The role of miR156 in developmental transitions in Nicotiana tabacum. Sci. China Life Sci. 58, 253–260 (2015). https://doi.org/10.1007/s11427-015-4808-5

Download citation

  • Received: 10 November 2014

  • Accepted: 16 December 2014

  • Published: 11 February 2015

  • Issue Date: March 2015

  • DOI: https://doi.org/10.1007/s11427-015-4808-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • phase transition
  • miR156
  • Nicotiana tabacum
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature