Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Science China Life Sciences
  3. Article

Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling

  • Reviews
  • Open access
  • Published: 24 July 2011
  • Volume 54, pages 699–711, (2011)
  • Cite this article
Download PDF

You have full access to this open access article

Science China Life Sciences Aims and scope Submit manuscript
Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling
Download PDF
  • Hon Cheung Lee1 
  • 2103 Accesses

  • 48 Citations

  • 6 Altmetric

  • Explore all metrics

Abstract

The concept advanced by Berridge and colleagues that intracellular Ca2+-stores can be mobilized in an agonist-dependent and messenger (IP3)-mediated manner has put Ca2+-mobilization at the center stage of signal transduction mechanisms. During the late 1980s, we showed that Ca2+-stores can be mobilized by two other messengers unrelated to inositol trisphosphate (IP3) and identified them as cyclic ADP-ribose (cADPR), a novel cyclic nucleotide from NAD, and nicotinic acid adenine dinucleotide phosphate (NAADP), a linear metabolite of NADP. Their messenger functions have now been documented in a wide range of systems spanning three biological kingdoms. Accumulated evidence indicates that the target of cADPR is the ryanodine receptor in the sarco/endoplasmic reticulum, while that of NAADP is the two pore channel in endolysosomes.

As cADPR and NAADP are structurally and functionally distinct, it is remarkable that they are synthesized by the same enzyme. They are thus fraternal twin messengers. We first identified the Aplysia ADP-ribosyl cyclase as one such enzyme and, through homology, found its mammalian homolog, CD38. Gene knockout in mice confirms the important roles of CD38 in diverse physiological functions from insulin secretion, susceptibility to bacterial infection, to social behavior of mice through modulating neuronal oxytocin secretion. We have elucidated the catalytic mechanisms of the Aplysia cyclase and CD38 to atomic resolution by crystallography and site-directed mutagenesis. This article gives a historical account of the cADPR/NAADP/CD38-signaling pathway and describes current efforts in elucidating the structure and function of its components.

Article PDF

Download to read the full article text

Similar content being viewed by others

Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores

Chapter © 2020

Geoffrey Burnstock, our friend and magister: the diadenosine polyphosphate connection

Article 06 October 2020

Diadenosine Tetraphosphate (Ap4A) in Health and Disease

Chapter © 2016
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Streb H, Irvine R F, Berridge M J, et al. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature, 1983, 306: 67–69, 6605482, 1:CAS:528:DyaL2cXitVyltg%3D%3D

    PubMed  CAS  Google Scholar 

  2. Bosanac I, Alattia J R, Mal T K, et al. Structure of the inositol 1,4,5-trisphosphate receptor binding core in complex with its ligand. Nature, 2002, 420: 696–700, 12442173, 1:CAS:528:DC%2BD38XpsVSiurs%3D

    PubMed  CAS  Google Scholar 

  3. Clapper D L, Walseth T F, Dargie P J, et al. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem, 1987, 262: 9561–9568, 3496336, 1:CAS:528:DyaL2sXkvFaisrs%3D

    PubMed  CAS  Google Scholar 

  4. Lee H C, Walseth T F, Bratt G T, et al. Structural determination of a cyclic metabolite of NAD+ with intracellular Ca2+-mobilizing activity. J Biol Chem, 1989, 264: 1608–1615, 2912976, 1:CAS:528:DyaL1MXhtFShurY%3D

    PubMed  CAS  Google Scholar 

  5. Clapper D L, Lee H C. Inositol trisphosphate induces Ca+2-release from non-mitochondrial stores in sea urchin egg homogenates. J Biol Chem, 1985, 260: 13947–3954, 2414285, 1:CAS:528:DyaL2MXlsFOrsb0%3D

    PubMed  CAS  Google Scholar 

  6. Mazia D. The release of calcium in Arbacia eggs on fertilization. J Cell Comp, 1937, Physiol, 10: 291–304, 1:CAS:528:DyaA1cXisVyqtw%3D%3D

    CAS  Google Scholar 

  7. Lee H C, Aarhus R, Levitt D. The crystal structure of cyclic ADP-ribose. Nature Struct Biol, 1994, 1: 143–144, 7656029, 1:CAS:528:DyaK2cXlt1yhtbg%3D

    PubMed  CAS  Google Scholar 

  8. Shuto S, Fukuoka M, Manikowsky A, et al. Total synthesis of cyclic ADP-carbocyclic-ribose, a stable mimic of Ca2+-mobilizing second messenger cyclic ADP-Ribose. J Am Chem Soc, 2001, 123: 8750–8759, 11535079, 1:CAS:528:DC%2BD3MXlvFynu70%3D

    PubMed  CAS  Google Scholar 

  9. Potter B V L, Walseth T F. Medicinal chemistry and pharmacology of cyclic ADP-ribose. Curr Mol Med, 2004, 4: 303–312, 15101687, 1:CAS:528:DC%2BD2cXjt1Orsrs%3D

    PubMed  CAS  Google Scholar 

  10. Walseth T F, Aarhus R, Zeleznikar R J Jr., et al. Determination of endogenous levels of cyclic ADP-ribose in rat tissues. Biochim Biophys Acta, 1991, 1094: 113–120, 1883849, 1:CAS:528:DyaK3MXmtVCju7o%3D

    PubMed  CAS  Google Scholar 

  11. Lee H C, Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem, 1995, 270: 2152–2157, 7836444, 1:CAS:528:DyaK2MXjsV2ksb4%3D

    PubMed  CAS  Google Scholar 

  12. Lam C M, Yeung P K, Lee H C, et al. Cyclic ADP-ribose links metabolism to multiple fission in the dinoflagellate Crypthecodinium cohnii. Cell Cal, 2009, 45: 346–357, 1:CAS:528:DC%2BD1MXjsFWks7w%3D

    CAS  Google Scholar 

  13. Navazio L, Bewell M A, Siddiqua A, et al. Calcium release from the endoplasmic reticulum of higher plants elicited by the NADP metabolite nicotinic acid adenine dinucleotide phosphate. Proc Natl Acad Sci USA, 2000, 97: 8693–8698, 10890899, 1:CAS:528:DC%2BD3cXlt1Gnsbw%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  14. Wu Y, Kuzma J, Marechal E, et al. Abscisic acid signaling through cyclic ADP-ribose in plants. Science, 1997, 278: 2126–2130, 9405349, 1:CAS:528:DyaK1cXhvFOj

    PubMed  CAS  Google Scholar 

  15. Johnson J D, Misler S. Nicotinic acid-adenine dinucleotide phosphate-sensitive calcium stores initiate insulin signaling in human beta cells. Proc Natl Acad Sci USA, 2002, 99: 14566–14571, 12381785, 1:CAS:528:DC%2BD38XosF2hsb4%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Podesta M, Zocchi E, Pitto A, et al. Extracellular cyclic ADP-ribose increases intracellular free calcium concentration and stimulates proliferation of human hemopoietic progenitors. FASEB J, 2000, 14: 680–690, 10744625, 1:CAS:528:DC%2BD3cXisFyhs78%3D

    PubMed  CAS  Google Scholar 

  17. Lee H C. Cyclic ADP-ribose and NAADP. Structures, Metabolism and Functions. Dordrecht: Kluwer Academic Publishers, 2002

    Google Scholar 

  18. Kuroda R, Kontani K, Kanda Y, et al. Increase of cGMP, cADP-ribose and inositol 1,4,5-trisphosphate preceding Ca2+ transients in fertilization of sea urchin eggs. Dev, 2001, 128: 4405–4414, 1:CAS:528:DC%2BD3MXptVGltbc%3D

    CAS  Google Scholar 

  19. Leckie C, Empson R, Becchetti A, et al. The NO pathway acts late during the fertilization response in sea urchin eggs. J Biol Chem, 2003, 278: 12247–12254, 12540836, 1:CAS:528:DC%2BD3sXisVOntro%3D

    PubMed  CAS  Google Scholar 

  20. Dargie P J, Agre M C, Lee H C. Comparison of Ca2+ mobilizing activities of cyclic ADP-ribose and inositol trisphosphate. Cell Regul, 1990, 1: 279–290, 2100201, 1:CAS:528:DyaK3cXhsFGlsrc%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Galione A, McDougall A, Busa W B, et al. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs. Science, 1993, 261: 348–352, 8392748, 1:CAS:528:DyaK3sXltFeqsL0%3D

    PubMed  CAS  Google Scholar 

  22. Lee H C, Aarhus R, Walseth T F. Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science, 1993, 261: 352–355, 8392749, 1:CAS:528:DyaK3sXltFeqsLo%3D

    PubMed  CAS  Google Scholar 

  23. Lee H C. Calcium signaling: NAADP ascends as a new messenger. Curr Biol, 2003, 13: R186–R188, 12620209, 1:CAS:528:DC%2BD3sXhvFaitLc%3D

    PubMed  CAS  Google Scholar 

  24. Lee H C. Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling. J Biol Chem, 2005, 280: 33693–33696, 16076847, 1:CAS:528:DC%2BD2MXhtVKisbrE

    PubMed  CAS  Google Scholar 

  25. Cancela J M. Specific Ca2+ signaling evoked by cholecystokinin and acetylcholine: The roles of NAADP, cADPR, and IP3. Annu Rev Physiol, 2001, 63: 99–117, 11181950, 1:CAS:528:DC%2BD3MXjtFKmt7Y%3D

    PubMed  CAS  Google Scholar 

  26. Cancela J M, Churchill G C, Galione A. Coordination of agonist-induced Ca2+-signalling patterns by NAADP in pancreatic acinar cells. Nature, 1999, 398: 74–76, 10078532, 1:CAS:528:DyaK1MXhvFaksL8%3D

    PubMed  CAS  Google Scholar 

  27. Yamasaki M, Thomas J M, Churchill G C, et al. Role of NAADP and cADPR in the induction and maintenance of agonist-evoked Ca2+ spiking in mouse pancreatic acinar cells. Curr Biol, 2005, 15: 874–878, 15886108, 1:CAS:528:DC%2BD2MXktVKqtbo%3D

    PubMed  CAS  Google Scholar 

  28. Guse A H, Lee H C. NAADP: A universal Ca2+ trigger. Sci Signal, 2008, 1: re10, 18984909

    PubMed  Google Scholar 

  29. Arredouani A, Evans A M, Ma J, et al. An emerging role for NAADP-mediated Ca2+ signaling in the pancreatic beta-cell. Islets, 2010, 2: 323–330, 21099331

    PubMed  PubMed Central  Google Scholar 

  30. Masgrau R, Churchill G C, Morgan A J, et al. NAADP: A new second messenger for glucose-induced Ca2+ responses in clonal pancreatic b-cells. Curr Biol, 2003, 13: 247–251, 12573222, 1:CAS:528:DC%2BD3sXhtVGmsLg%3D

    PubMed  CAS  Google Scholar 

  31. Yamasaki M, Masgrau R, Morgan A J, et al. Organelle selection determines agonist-specific Ca2+ signals in pancreatic acinar and beta cells. J Biol Chem, 2004, 279: 7234–7240, 14660554, 1:CAS:528:DC%2BD2cXht1Cksbc%3D

    PubMed  CAS  Google Scholar 

  32. Galione A, Lee H C, Busa W B. Ca2+-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science, 1991, 253: 1143–1146, 1909457, 1:CAS:528:DyaK3MXmt1yrtr8%3D

    PubMed  CAS  Google Scholar 

  33. Lee H C. Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J Biol Chem, 1993, 268: 293–299, 8416936, 1:CAS:528:DyaK3sXisFWktr0%3D

    PubMed  CAS  Google Scholar 

  34. Meszaros L G, Bak J, Chu A. Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature, 1993, 364: 76–79, 8391127, 1:CAS:528:DyaK3sXkvV2isr0%3D

    PubMed  CAS  Google Scholar 

  35. Chen S R W, Li X L, Ebisawa K, et al. Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J Biol Chem, 1997, 272: 24234–24246, 9305876, 1:CAS:528:DyaK2sXmsFamsr8%3D

    PubMed  CAS  Google Scholar 

  36. Copello J A, Qi Y, Jeyakumar L H, et al. Lack of effect of cADP-ribose and NAADP on the activity of skeletal muscle and heart ryanodine receptors. Cell Cal, 2001, 30: 269–284, 1:CAS:528:DC%2BD3MXnvVelu7c%3D

    CAS  Google Scholar 

  37. Fruen B R, Mickelson J R, Shomer N H, et al. Cyclic ADP-ribose does not affect cardiac or skeletal muscle ryanodine receptors. FEBS Lett, 1994, 352: 123–126, 7925959, 1:CAS:528:DyaK2cXmsFanur8%3D

    PubMed  CAS  Google Scholar 

  38. Tian C, Shao C H, Moore C J, et al. Gain of Function of cardiac ryanodine receptor in a rat model of type 1 diabetes. Cardiovasc Res, 2011, doi: 10.1093/cvr/cvr076

  39. Lokuta A J, Darszon A, Beltran C, et al. Detection and functional characterization of ryanodine receptors from sea urchin eggs. J Physiol, 1998, 510,1: 155–164, 9625874, 1:CAS:528:DyaK1cXkvVKks7s%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  40. Tang W X, Chen Y F, Zou A P, et al. Role of FKBP12.6 in cADPR-induced activation of reconstituted ryanodine receptors from arterial smooth muscle. Am J Physiol Heart Circ Physiol, 2002, 282: H1304–1310, 11893565, 1:CAS:528:DC%2BD38XivVent7k%3D

    PubMed  CAS  Google Scholar 

  41. Cui Y, Galione A, Terrar D A. Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. Biochem J, 1999, 342: 269–273, 10455010, 1:CAS:528:DyaK1MXmtFChtLg%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  42. Macgregor A T, Rakovic S, Galione A, et al. Dual effects of cyclic ADP-ribose on sarcoplasmic reticulum Ca2+ release and storage in cardiac myocytes isolated from guinea-pig and rat ventricle. Cell Cal, 2007, 41: 537–546, 1:CAS:528:DC%2BD2sXkslKrtbo%3D

    CAS  Google Scholar 

  43. Zhang X, Tallini Y N, Chen Z, et al. Dissociation of FKBP 12.6 from ryanodine receptor type 2 is regulated by cyclic ADP-ribose but not ta-adrenergic stimulation in mouse cardiomyocytes. Cardiovasc Res, 2009, 84: 253–262

  44. Zheng J, Wenzhi B, Miao L, et al. Ca(2+) release induced by cADP-ribose is mediated by FKBP12.6 proteins in mouse bladder smooth muscle. Cell Cal, 2010, 47: 449–457, 1:CAS:528:DC%2BC3cXmsVGrurk%3D

    CAS  Google Scholar 

  45. Ogunbayo O A, Zhu Y, Rossi D, et al. cADPR activates ryanodine receptors while NAADP activates two pore domain channels. J Biol Chem, 2011, 286: 9136–9140, 21216967, 1:CAS:528:DC%2BC3MXjtFOis7k%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  46. Lee H C, Aarhus R, Graeff R, et al. Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature, 1994, 370: 307–309, 8035880, 1:CAS:528:DyaK2cXltVCrsr8%3D

    PubMed  CAS  Google Scholar 

  47. Lee H C, Aarhus R, Graeff R M. Sensitization of calcium-induced calcium release by cyclic ADP-ribose and calmodulin. J Biol Chem, 1995, 270: 9060–9066, 7721819, 1:CAS:528:DyaK2MXlt1ajsLw%3D

    PubMed  CAS  Google Scholar 

  48. Tanaka Y, Tashjian A H Jr. Calmodulin is a selective mediator of Ca2+-induced Ca2+ release via the ryanodine receptor-like Ca2+ channel triggered by cyclic ADP-ribose. Proc Natl Acad Sci USA, 1995, 92: 3244–3248, 7724546, 1:CAS:528:DyaK2MXltFSntL4%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  49. Okabe E, Tsujimoto Y, Kobayashi Y. Calmodulin and cyclic ADP-ribose interaction in Ca2+ signaling related to cardiac sarcoplasmic reticulum: superoxide anion radical-triggered Ca2+ release. Antioxid Redox Signal, 2000, 2: 47–54, 11232599, 1:CAS:528:DC%2BD3cXisFWhur4%3D

    PubMed  CAS  Google Scholar 

  50. Thomas J M, Summerhill R J, Fruen B R, et al. Calmodulin dissociation mediates desensitization of the cADPR-Induced Ca2+ release mechanism. Curr Biol, 2002, 12: 2018–2002, 12477390, 1:CAS:528:DC%2BD38XpsFehur8%3D

    PubMed  CAS  Google Scholar 

  51. Wang Y X, Zheng Y M, Mei Q B, et al. FKBP12.6 and cADPR regulation of Ca2+ release in smooth muscle cells. Am J Physiol, 2003, 286: C538–C546

    Google Scholar 

  52. Noguchi N, Takasawa S, Nata K, et al. Cyclic ADP-ribose binds to FK506-binding protein 12.6 to release Ca2+ from islet microsomes. J Biol Chem, 1997, 272: 3133–3136., 9013543, 1:CAS:528:DyaK2sXhtFenu70%3D

    PubMed  CAS  Google Scholar 

  53. Morita K, Kitayama T, Kitayama S, et al. Cyclic ADP-ribose requires FK506-binding protein to regulate intracellular Ca2+ dynamics and catecholamine release in acetylcholine-stimulated bovine adrenal chromaffin cells. J Pharmacol Sci, 2006, 101: 40–51, 16648664, 1:CAS:528:DC%2BD28XlsVGns78%3D

    PubMed  CAS  Google Scholar 

  54. Guse A H, Berg I, Dasilva C P, et al. Ca2+ entry induced by cyclic ADP-ribose in intact T-lymphocytes. J Biol Chem, 1997, 272: 8546–8550, 9079684, 1:CAS:528:DyaK2sXitF2mu7k%3D

    PubMed  CAS  Google Scholar 

  55. Partida-Sanchez S, Cockayne D, Monard S, et al. Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nature Med, 2001, 7: 1209–1216, 11689885, 1:CAS:528:DC%2BD3MXotlKlu7o%3D

    PubMed  CAS  Google Scholar 

  56. Togashi K, Hara Y, Tominaga T, et al. TRPM2 activation by cyclic ADP-ribose at body temperature is involved in insulin secretion. EMBO J, 2006, 25: 1804–1815, 16601673, 1:CAS:528:DC%2BD28XktVGms7o%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  57. Kolisek M, Beck A, Fleig A, et al. Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol Cell, 2005, 18: 61–69, 15808509, 1:CAS:528:DC%2BD2MXjt1Oit7g%3D

    PubMed  CAS  Google Scholar 

  58. Lange I, Penner R, Fleig A, et al. Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Cal, 2008, 44: 604–615, 1:CAS:528:DC%2BD1cXhtlGgs7nK

    CAS  Google Scholar 

  59. Eisfeld J, Luckhoff A. TRPM2. Handb Exp Pharmacol. 2007, 179: 237–252, 17217061, 1:CAS:528:DC%2BD2sXjtlGrtL8%3D

    PubMed  CAS  Google Scholar 

  60. Gasser A, Glassmeier G, Fliegert R, et al. Activation of T cell calcium influx by the second messenger ADP-ribose. J Biol Chem, 2005, 281: 2489–2496, 16316998

    PubMed  Google Scholar 

  61. Heiner I, Eisfeld J, Warnstedt M, et al. Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J, 2006, 9: 9

    Google Scholar 

  62. Starkus J, Beck A, Fleig A, et al. Regulation of TRPM2 by extra- and intracellular calcium. J Gen Physiol, 2007, 4: 427–440

    Google Scholar 

  63. Perraud A L, Fleig A, Dunn C A, et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature, 2001, 411: 595–599, 11385575, 1:CAS:528:DC%2BD3MXksVShsbo%3D

    PubMed  CAS  Google Scholar 

  64. Togashi K, Inada H, Tominaga M. Inhibition of the transient receptor potential cation channel TRPM2 by 2-aminoethoxydiphenyl borate (2-APB). Br J Pharmacol, 2008, 153: 1324–1330, 18204483, 1:CAS:528:DC%2BD1cXjtleltb0%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  65. Amina S, Hashii M, Ma W J, et al. Intracellular calcium elevation induced by extracellular application of cyclic-ADP-ribose or oxytocin is temperature-sensitive in rodent NG108-15 neuronal cells with or without exogenous expression of human oxytocin receptors. J Neuroendocrinol, 2010, 5: 460–466

    Google Scholar 

  66. Jin D, Liu H X, Hirai H, et al. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature, 2007, 446: 41–45, 17287729, 1:CAS:528:DC%2BD2sXit1arsLw%3D

    PubMed  CAS  Google Scholar 

  67. Scarfi S, Ferraris C, Fruscione F, et al. Cyclic ADP-ribose-mediated expansion and stimulation of human mesenchymal stem cells by the plant hormone abscisic acid. Stem Cells, 2008, 11: 2855–2864

    Google Scholar 

  68. Tao R, Sun H Y, Lau C P, et al. Cyclic ADP ribose is a novel regulator of intracellular Ca(2+) oscillations in human bone marrow mesenchymal stem cells. J Cell Mol Med, 2011, doi: 10.1111/j.1582-4934.2011.01263.x.

  69. Aarhus R, Dickey D M, Graeff R M, et al. Activation and inactivation of Ca2+ release by NAADP+. J Biol Chem, 1996, 271: 8513–8516, 8621471, 1:CAS:528:DyaK28Xitlegurc%3D

    PubMed  CAS  Google Scholar 

  70. Genazzani A A, Empson R M, Galione A. Unique inactivation properties of NAADP-sensitive Ca2+ release. J Biol Chem, 1996, 271: 11599–11602, 8662773, 1:CAS:528:DyaK28XjtV2lt78%3D

    PubMed  CAS  Google Scholar 

  71. Lee H C, Aarhus R. Structural determinants of nicotinic acid adenine dinucleotide phosphate important for its calcium-mobilizing activity. J Biol Chem, 1997, 272: 20378–20383, 9252343, 1:CAS:528:DyaK2sXlsFKhu7o%3D

    PubMed  CAS  Google Scholar 

  72. Lee H C. Modulator and messenger functions of cyclic ADP-ribose in calcium signaling. Re Prog Horm Res, 1996, 51: 355–88, 1:CAS:528:DyaK2sXktFKis74%3D

    CAS  Google Scholar 

  73. Lee H C, Aarhus R. Functional visualization of the separate but interacting calcium stores sensitive to NAADP and cyclic ADP-ribose. J Cell Sci, 2000, 113: 4413–4420, 11082034, 1:CAS:528:DC%2BD3MXmsVKmsw%3D%3D

    PubMed  CAS  Google Scholar 

  74. Churchill G C, Okada Y, Thomas J M, et al. NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell, 2002, 111: 703–708, 12464181, 1:CAS:528:DC%2BD38XptlGrur4%3D

    PubMed  CAS  Google Scholar 

  75. Kinnear N P, Boittin F X, Thomas J M, et al. Lysosome-Sarcoplasmic reticulum junctions: A trigger zone for calcium signalling by NAADP and endothelin-1. J Biol Chem, 2004, 279: 54319–54326, 15331591, 1:CAS:528:DC%2BD2cXhtVyltbvM

    PubMed  CAS  Google Scholar 

  76. Galione A, Petersen O H. The NAADP Receptor: New receptors or new regulation? Mol Interv, 2005, 5: 73–79, 15821155, 1:CAS:528:DC%2BD2MXjvVyntLo%3D

    PubMed  CAS  Google Scholar 

  77. Peiter E, Maathuis F J, Mills L N, et al. The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature, 2005, 434: 404–408, 15772667, 1:CAS:528:DC%2BD2MXit1yru7k%3D

    PubMed  CAS  Google Scholar 

  78. Calcraft P J, Ruas M, Pan Z, et al. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature, 2009, 459: 596–601, 19387438, 1:CAS:528:DC%2BD1MXkvVKns78%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  79. Brailoiu E, Churamani D, Cai X, et al. Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. J Cell Biol, 2009, 186: 201–209, 19620632, 1:CAS:528:DC%2BD1MXpsVGisL8%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  80. Zong X, Schieder M, Cuny H, et al. The two-pore channel TPCN2 mediates NAADP-dependent Ca2+-release from lysosomal stores. Pflugers Arch, 2009, 458: 891–899, 19557428, 1:CAS:528:DC%2BD1MXptlamsL8%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Schieder M, Roetzer K, Brueggemann A, et al. Characterization of two pore channel 2 (TPCN2) -mediated Ca2+ currents in isolated lysosomes. J Biol Chem, 2010, 285: 21219–21222, 20495006, 1:CAS:528:DC%2BC3cXos1WrsL0%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  82. Ruas M, Rietdorf K, Arredouani A, et al. Purified TPC isoforms form NAADP receptors with distinct roles for Ca2+ signaling and endolysosomal trafficking. Curr Biol, 2010, Mar 24. [Epub ahead of print]

  83. Pitt S J, Funnell T, Sitsapesan M, et al. TPC2 is a novel NAADP-sensitive ca2+-release channel, operating as a dual sensor of luminal pH and Ca2+. J Biol Chem, 2010, 285: 35039–35046, 20720007, 1:CAS:528:DC%2BC3cXhtlGktbnP

    PubMed  CAS  PubMed Central  Google Scholar 

  84. Galione A, Evans A M, Ma J, et al. The acid test: the discovery of two-pore channels (TPCs) as NAADP-gated endolysosomal Ca2+ release channels. Pflugers Arch, 2009, 458: 869–876, 19475418, 1:CAS:528:DC%2BD1MXptlamsb8%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  85. Rusinko N, Lee H C. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD+ into a cyclic metabolite with intracellular Ca2+-mobilizing activity. J Biol Chem, 1989, 264: 11725–11731, 2745413, 1:CAS:528:DyaL1MXlslWnurk%3D

    PubMed  CAS  Google Scholar 

  86. Hellmich M R, Strumwasser F. Purification and characterization of a molluscan egg-specific NADase, a second-messenger enzyme. Cell Regul, 1991, 2: 193–202, 1650254, 1:CAS:528:DyaK3MXit1Cht7w%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  87. Lee H C, Aarhus R. ADP-ribosyl cyclase: an enzyme that cyclizes NAD+ into a calcium-mobilizing metabolite. Cell Regul, 1991, 2: 203–209, 1830494, 1:CAS:528:DyaK3MXltV2jtro%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  88. Graeff R M, Walseth T F, Fryxell K, et al. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity. J Biol Chem, 1994, 269: 30260–30267, 7982936, 1:CAS:528:DyaK2MXhs12ntrk%3D

    PubMed  CAS  Google Scholar 

  89. States D J, Walseth T F, Lee H C. Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38. Trends Biochem Sci, 1992, 17: 495, 1471258, 1:CAS:528:DyaK3sXhvVGisw%3D%3D

    PubMed  CAS  Google Scholar 

  90. Howard M, Grimaldi J C, Bazan J F, et al. Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science, 1993, 262: 1056–1059, 8235624, 1:CAS:528:DyaK2cXmsVWn

    PubMed  CAS  Google Scholar 

  91. Lee H C, Zocchi E, Guida L, et al. Production and hydrolysis of cyclic ADP-ribose at the outer surface of human erythrocytes. Biochem Biophys Res Commun, 1993, 191: 639–645, 8461019, 1:CAS:528:DyaK3sXktVGltLg%3D

    PubMed  CAS  Google Scholar 

  92. Takasawa S, Tohgo A, Noguchi N, et al. Synthesis and hydrolysis of cyclic ADP-ribose by human leukocyte antigen CD38 and inhibition of the hydrolysis by ATP. J Biol Chem, 1993, 268: 26052–26054, 8253715, 1:CAS:528:DyaK3sXmsVKntbc%3D

    PubMed  CAS  Google Scholar 

  93. Kim H, Jacobson E L, Jacobson M K. Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases. Science, 1993, 261: 1330–1333, 8395705, 1:CAS:528:DyaK3sXmsVCjtbw%3D

    PubMed  CAS  Google Scholar 

  94. Graeff R M, Mehta K, Lee H C. GDP-ribosyl cyclase activity as a measure of CD38 induction by retinoic acid in HL-60 cells. Biochem. Biophys Res Commun, 1994, 205: 722–727, 7999103, 1:CAS:528:DyaK2MXis1altb0%3D

    PubMed  CAS  Google Scholar 

  95. Graeff R M, Walseth T F, Hill H K, et al. Fluorescent analogs of cyclic ADP-ribose: synthesis, spectral characterization, and use. Biochemistry, 1996, 35: 379–386, 8555207, 1:CAS:528:DyaK2MXhtVSmtrjK

    PubMed  CAS  Google Scholar 

  96. Graeff R, Lee H C. A novel cycling assay for cellular cyclic ADP-ribose with nanomolar sensitivity. Biochem J, 2002, 361: 379–384, 11772410, 1:CAS:528:DC%2BD38XitVGqsL0%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  97. Kato I, Yamamoto Y, Fujimura M, et al. CD38 disruption impairs glucose-induced increases in cyclic ADP-ribose, [Ca2+]i and insulin secretion. J Biol Chem, 1999, 274: 1869–1872, 9890936, 1:CAS:528:DyaK1MXovVGisg%3D%3D

    PubMed  CAS  Google Scholar 

  98. Fukushi Y, Kato I, Takasawa S, et al. Identification of cyclic ADP-ribose-dependent mechanisms in pancreatic muscarinic Ca2+ signaling using CD38 knockout mice. J Biol Chem, 2001, 276: 649–655, 11001947, 1:CAS:528:DC%2BD3MXmtFWisg%3D%3D

    PubMed  CAS  Google Scholar 

  99. Partida-Sanchez S, Goodrich S, Kusser K, et al. Regulation of dendritic cell trafficking by the ADP-ribosyl cyclase CD38; Impact on the development of humoral immunity. Immunity, 2004, 20: 279–291, 15030772, 1:CAS:528:DC%2BD2cXis1KhtrY%3D

    PubMed  CAS  Google Scholar 

  100. Sun L, Iqbal J, Dolgilevich S, et al. Disordered osteoclast formation and function in a CD38 (ADP-ribosyl cyclase)-deficient mouse establishes an essential role for CD38 in bone resorption. FASEB J, 2003, 17: 369–375, 12631576, 1:CAS:528:DC%2BD3sXitFeitbc%3D

    PubMed  CAS  Google Scholar 

  101. Deshpande D A, White T A, Guedes A G P, et al. Altered airway responsiveness in CD38 deficient mice. Am J Respir Cell Mol Biol, 2005, 32: 149–156, 15557017, 1:CAS:528:DC%2BD2MXhtFCnsrs%3D

    PubMed  CAS  Google Scholar 

  102. Mitsui-Saito M, Kato I, Takasawa S, et al. CD38 gene disruption inhibits the contraction induced by alpha-adrenoceptor stimulation in mouse aorta. J Vet Med Sci, 2003, 65: 1325–1330, 14709821, 1:CAS:528:DC%2BD2cXmsVKhug%3D%3D

    PubMed  CAS  Google Scholar 

  103. Takahashi J, Kagaya Y, Kato I, et al. Deficit of CD38/cyclic ADP-ribose is differentially compensated in hearts by gender. Biochem Biophys Res Commun, 2003, 312: 434–440, 14637156, 1:CAS:528:DC%2BD3sXptVelur4%3D

    PubMed  CAS  Google Scholar 

  104. Malavasi F, Deaglio S, Funaro A, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev, 2008, 88: 841–886, 18626062, 1:CAS:528:DC%2BD1cXpslKgs7s%3D

    PubMed  CAS  Google Scholar 

  105. Billington R A, Ho A, Genazzani A A. Nicotinic acid adenine dinucleotide phosphate (NAADP) is present at micromolar concentrations in sea urchin spermatozoa. J Physiol, 2002, 544.1: 107–112

    Google Scholar 

  106. Churchill G C, O’Neill J S, Masgrau R, et al. Sperm deliver a new second messenger: NAADP. Curr Biol, 2003, 13: 125–128, 12546785, 1:CAS:528:DC%2BD3sXmsFerug%3D%3D

    PubMed  CAS  Google Scholar 

  107. Churamani D, Carrey E A, Dickinson G D, et al. Determination of cellular nicotinic acid adenine dinucleotide phosphate (NAADP) levels. Biochem J, 2004, 380: 449–454, 14984366, 1:CAS:528:DC%2BD2cXksFyiu7Y%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Aarhus R, Graeff R M, Dickey D M, et al. ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. J Biol Chem, 1995, 270: 30327–30333, 8530456, 1:CAS:528:DyaK28XhtFKiug%3D%3D

    PubMed  CAS  Google Scholar 

  109. Kim S Y, Cho B H, Kim U H. CD38-mediated Ca2+ signaling contributes to angiotensin II-induced activation of hepatic stellate cells: attenuation of hepatic fibrosis by CD38 ablation. J Biol Chem, 2010, 285: 576–582, 19910464, 1:CAS:528:DC%2BD1MXhs1SqtrzI

    PubMed  CAS  PubMed Central  Google Scholar 

  110. Rah S Y, Mushtaq M, Nam T S, et al. Generation of cyclic ADP-Ribose and nicotinic acid adenine dinucleotide phosphate by CD38 for Ca2+ signaling in interleukin-8-treated lymphokine-activated killer cells. J Biol Chem, 2010, 285: 21877–21887, 20442403, 1:CAS:528:DC%2BC3cXos1Wrurc%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  111. Cosker F, Cheviron N, Yamasaki M, et al. The ecto-enzyme CD38 is a NAADP synthase which couples receptor activation to Ca2+ mobilization from lysosomes in pancreatic acinar cells. J Biol Chem, 2010, 285: 38251–38259, 20870729, 1:CAS:528:DC%2BC3cXhsVOku7zF

    PubMed  CAS  PubMed Central  Google Scholar 

  112. Jackson D G, Bell J I. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous patern of expression during lymphocyte differentiation. J Immunol, 1990, 144: 2811–2815, 2319135, 1:CAS:528:DyaK3cXltFSiurc%3D

    PubMed  CAS  Google Scholar 

  113. Prasad G S, McRee D E, Stura E A, et al. Crystal structure of Aplysia ADP ribosyl cyclase, a homologue of the bifunctional ectozyme CD38. Nature Struct Biol, 1996, 3: 957–964, 8901875, 1:CAS:528:DC%2BD38Xms1Cltrc%3D

    PubMed  CAS  Google Scholar 

  114. Munshi C, Baumann C, Levitt D, et al. The homo-dimeric form of ADP-ribosyl cyclase in solution. Biochim Biophys Acta, 1998, 1388: 428–436, 9858777, 1:CAS:528:DyaK1cXnslOktbs%3D

    PubMed  CAS  Google Scholar 

  115. Munshi C, Thiel D J, Mathews I I, et al. Characterization of the active site of ADP-ribosyl cyclase. J Biol Chem, 1999, 274: 30770–30777, 10521467, 1:CAS:528:DyaK1MXntVSmtLk%3D

    PubMed  CAS  Google Scholar 

  116. Liu Q, Kriksunov I A, Graeff R, et al. Crystal structure of human CD38 extracellular domain. Structure, 2005, 13: 1331–1339, 16154090, 1:CAS:528:DC%2BD2MXpvFentrk%3D

    PubMed  CAS  Google Scholar 

  117. Liu Q, Kriksunov I A, Graeff R, et al. Structural basis for formation and hydrolysis of calcium messenger cyclic ADP-ribose by human CD38. J Biol Chem, 2007, 282: 5853–5861, 17182614, 1:CAS:528:DC%2BD2sXhvVaiu7c%3D

    PubMed  CAS  Google Scholar 

  118. Liu Q, Graeff R, Kriksunov I A, et al. Conformational closure of the catalytic site of human CD38 induced by calcium. Biochemistry, 2008, 47: 13966–13973, 1:CAS:528:DC%2BD1cXhsVOjsLrO

    CAS  PubMed Central  Google Scholar 

  119. Munshi C, Aarhus R, Graeff R, et al. Identification of the enzymatic active site of CD38 by site-directed mutagenesis. J Biol Chem, 2000, 275: 21566–21571, 10781610, 1:CAS:528:DC%2BD3cXkvFGisb8%3D

    PubMed  CAS  Google Scholar 

  120. Graeff R, Liu Q, Kriksunov I A, et al. Mechanism of cyclizing NAD to cyclic ADP-ribose by ADP-ribosyl cyclase and CD38. J Biol Chem, 2009, 284: 27629–27636, 19640843, 1:CAS:528:DC%2BD1MXhtFyjs7zI

    PubMed  CAS  PubMed Central  Google Scholar 

  121. Graeff R, Munshi C, Aarhus R, et al. A single residue at the active site of CD38 determines its NAD cyclizing and hydrolyzing activities. J Biol Chem, 2001, 276: 12169–12173, 11278881, 1:CAS:528:DC%2BD3MXjtFyltLY%3D

    PubMed  CAS  Google Scholar 

  122. Graeff R, Liu Q, Kriksunov I A, et al. Acidic residues at the active sites of CD38 and ADP-ribosyl cyclase determine NAADP synthesis and hydrolysis activities. J Biol Chem, 2006, 281: 28951–28957, 16861223, 1:CAS:528:DC%2BD28XpvFanu7o%3D

    PubMed  CAS  Google Scholar 

  123. Liu Q, Kriksunov I A, Graeff R, et al. Structural basis for the mechanistic understanding of human CD38 controlled multiple catalysis. J Biol Chem, 2006, 281: 32861–32869, 16951430, 1:CAS:528:DC%2BD28XhtFSrtrrJ

    PubMed  CAS  Google Scholar 

  124. Liu Q, Kriksunov I A, Jiang H, et al. Covalent and noncovalent intermediates of an NAD utilizing enzyme, human CD38. Chem Biol, 2008, 15: 1068–1078, 18940667, 1:CAS:528:DC%2BD1cXht1KmsrfF

    PubMed  CAS  PubMed Central  Google Scholar 

  125. Zhang H, Graeff R, Chen Z, et al. Dynamic conformations of the CD38-mediated NAD cyclization captured in a single crystal. J Mol Biol, 2011, 405: 1070–1078, 21134381, 1:CAS:528:DC%2BC3MXjvFKltQ%3D%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  126. Mohanty B, Serrano P, Pedrini B, et al. Comparison of NMR and crystal structures for the proteins TM1112 and TM1367. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2010, 66: 1381–1392, 20944235

    PubMed  CAS  PubMed Central  Google Scholar 

  127. Galione A, White A, Willmott N, et al. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature, 1993, 365: 456–459, 7692303, 1:CAS:528:DyaK3sXmt1aht78%3D

    PubMed  CAS  Google Scholar 

  128. Willmott N, Sethi J K, Walseth T F, et al. Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J Biol Chem, 1996, 271: 3699–705, 8631983, 1:CAS:528:DyaK28XhtFOktLY%3D

    PubMed  CAS  Google Scholar 

  129. Wilson H L, Galione A. Differential regulation of nicotinic acid adenine dinucleotide phosphate and cADP-ribose production by cAMP and cGMP. Biochem J, 1998, 331: 837–843, 9560312, 1:CAS:528:DyaK1cXjt12hsrc%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  130. Graeff R M, Franco L, De Flora A, et al. Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J Biol Chem, 1998, 273: 118–125, 9417055, 1:CAS:528:DyaK1cXjvFShsg%3D%3D

    PubMed  CAS  Google Scholar 

  131. Reyes-Harde M, Empson R, Potter B V L, et al. Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. Proc Natl Acad Sci USA, 1999, 96: 4061–4066, 10097163, 1:CAS:528:DyaK1MXjslCht7w%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  132. Shawl A I, Park K H, Kim U H. Insulin receptor signaling for the proliferation of pancreatic beta-cells: Involvement of Ca2+ second messengers, IP3, NAADP and cADPR. Islets, 2009, 1: 216–223, 21099275

    PubMed  Google Scholar 

  133. Sternfeld L, Krause E, Guse A H, et al. Hormonal control of ADP-ribosyl cyclase in pancreatic acinar cells from rat. J Biol Chem, 2003, 36: 33629–33636

    Google Scholar 

  134. Xie G H, Rah S Y, Kim S J, et al. ADP-ribosyl cyclase couples to cyclic AMP signaling in the cardiomyocytes. Biochem Biophys Res Commun, 2005, 330: 1290–1298, 15823583, 1:CAS:528:DC%2BD2MXjtVyksLs%3D

    PubMed  CAS  Google Scholar 

  135. Bruzzone S, Moreschi I, Usai C, et al. Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proc Natl Acad Sci USA, 2007, 104: 5759–5764, 17389374, 1:CAS:528:DC%2BD2sXkt1Kgsbs%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  136. Magnone M, Bruzzone S, Guida L, et al. Abscisic acid released by human monocytes activates monocytes and vascular smooth muscle cell responses involved in atherogenesis. J Biol Chem, 2009, 284: 17808–17818, 19332545, 1:CAS:528:DC%2BD1MXnsVWksbo%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  137. Bruzzone S, Moreschi I, Guida L, et al. Extracellular NAD+ regulates intracellular calcium levels and induces activation of human granulocytes. Biochem J, 2006, 393: 697–704, 16225456, 1:CAS:528:DC%2BD28XmtlOltg%3D%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  138. De Flora A, Guida L, Franco L, et al. The CD38/Cyclic ADP-ribose system-A topological paradox. Int J Biochem Cell Biol, 1997, 29: 1149–1166, 9438379

    PubMed  Google Scholar 

  139. De Flora A, Zocchi E, Guida L, et al. Autocrine and paracrine calcium signaling by the CD38/NAD+/cyclic ADP-ribose system. Ann NY Acad Sci, 2004, 1028: 176–191, 15650244

    PubMed  Google Scholar 

  140. Bruzzone S, Franco L, Guida L, et al. A self-restricted CD38-connexin 43 cross-talk affects NAD+ and cyclic ADP-ribose metabolism and regulates intracellular calcium in 3T3 fibroblasts. J Biol Chem, 2001, 276: 48300–48308, 11602597, 1:CAS:528:DC%2BD38XltVGr

    PubMed  CAS  Google Scholar 

  141. Bruzzone S, Guida L, Zocchi E, et al. Connexin 43 hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact cells. Faseb J, 2001, 15: 10–12, 11099492, 1:CAS:528:DC%2BD3MXht1Snsrc%3D

    PubMed  CAS  Google Scholar 

  142. Guida L, Bruzzone S, Sturla L, et al. Equilibrative and concentrative nucleoside transporters mediate influx of extracellular cyclic ADP-Ribose into 3T3 murine fibroblasts. J Biol Chem, 2002, 277: 47097–47105, 12368285, 1:CAS:528:DC%2BD38XptFSktLs%3D

    PubMed  CAS  Google Scholar 

  143. Guida L, Franco L, Bruzzone S, et al. Concentrative influx of functionally active cyclic ADP-ribose in dimethylsulfoxide-differen tiated HL-60 cells. J Biol Chem, 2004, 279: 22066–22075, 15028729, 1:CAS:528:DC%2BD2cXjvF2rs78%3D

    PubMed  CAS  Google Scholar 

  144. Yamada M, Mizuguchi M, Otsuka N, et al. Ultrastructural localization of CD38 immunoreactivity in rat brain. Brain Res, 1997, 756: 52–60, 9187313, 1:CAS:528:DyaK2sXislehurc%3D

    PubMed  CAS  Google Scholar 

  145. Kou W, Banerjee S, Eudy J, et al. CD38 regulation in activated astrocytes: Implications for neuroinflammation and HIV-1 brain infection. J Neurosci Res, 2009, 87: 2326–2339, 19365854, 1:CAS:528:DC%2BD1MXnt1Sit7o%3D

    PubMed  CAS  Google Scholar 

  146. Davis L C, Morgan A J, Ruas M, et al. Ca2+ Signaling occurs via second messenger release from intraorganelle synthesis sites. Curr Biol, 2008, 18: 1612–1618, 18951023, 1:CAS:528:DC%2BD1cXhtlSgsbfP

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Adebanjo O A, Anandatheerthavarada H K, Koval A P, et al. A new function for CD38/ADP-ribosyl cyclase in nuclear Ca2+ homeostasis. Nature Cell Biol, 1999, 1: 409–414, 10559984, 1:CAS:528:DyaK1MXns1Gqsb8%3D

    PubMed  CAS  Google Scholar 

  148. Khoo K M, Han M-K, Park J B, et al. Localization of the cyclic ADP-ribose-dependent calcium signaling pathway in hepatocyte nucleus. J Biol Chem, 2000, 275: 24807–24817, 10818108, 1:CAS:528:DC%2BD3cXlsl2jt78%3D

    PubMed  CAS  Google Scholar 

  149. Yalcintepe L, Albeniz I, Adin-Cinar S, et al. Nuclear CD38 in retinoic acid-induced HL-60 cells. Exper Cell Res, 2005, 303: 14–21, 1:CAS:528:DC%2BD2cXhtVaqtrfJ

    CAS  Google Scholar 

  150. Higy M, Junne T, Spiess M. Topogenesis of membrane proteins at the endoplasmic reticulum. Biochemistry, 2004, 43: 12716–12722, 15461443, 1:CAS:528:DC%2BD2cXnsFOgtrY%3D

    PubMed  CAS  Google Scholar 

  151. Seppala S, Slusky J S, Lloris-Garcera P, et al. Control of membrane protein topology by a single C-terminal residue. Science, 2010, 328: 1698–1700, 20508091

    PubMed  Google Scholar 

  152. Hegde R S, Mastrianni J A, Scott M R, et al. A transmembrane form of the prion protein in neurodegenerative disease. Science, 1998, 279: 827–834, 9452375, 1:CAS:528:DyaK1cXhtVKrtLk%3D

    PubMed  CAS  Google Scholar 

  153. Hegde R S, Voigt S, Lingappa V R. Regulation of Protein topology by trans-acting factors at the endoplasmic reticulum. Mol Cell, 1998, 2: 85–91, 9702194, 1:CAS:528:DyaK1cXltVektbs%3D

    PubMed  CAS  Google Scholar 

  154. Stewart R S, Harris D A. A transmembrane form of the prion protein is localized in the Golgi apparatus of neurons. J Biol Chem, 2005, 280: 15855–15864, 15671025, 1:CAS:528:DC%2BD2MXjtleisLc%3D

    PubMed  CAS  Google Scholar 

  155. Stewart R S, Harris D A. Mutational analysis of topological determinants in prion protein (PrP) and measurement of transmembrane and cytosolic PrP during prion infection. J Biol Chem, 2003, 278: 45960–45968, 12933795, 1:CAS:528:DC%2BD3sXosl2itLg%3D

    PubMed  CAS  Google Scholar 

  156. Cumming R C, Andon N L, Haynes P A, et al. Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem, 2004, 279: 21749–21758, 15031298, 1:CAS:528:DC%2BD2cXjvF2ktb0%3D

    PubMed  CAS  Google Scholar 

  157. Brennan J P, Wait R, Begum S, et al. Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis. J Biol Chem, 2004, 279: 41352–41360, 15292244, 1:CAS:528:DC%2BD2cXnvFWhtrk%3D

    PubMed  CAS  Google Scholar 

  158. Stewart E J, Åslund F, Beckwith J. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J, 1998, 17: 5543–5550, 9755155, 1:CAS:528:DyaK1cXmvVyjsrY%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  159. Zhao Y J, Zhang H M, Lam C M C, et al. Cytosolic CD38 forms intact disulfides and is active in elevating intracellular cyclic ADP-ribose. J Biol Chem, 2011, 286: 22170–22177, 21524995, 1:CAS:528:DC%2BC3MXns1Kks70%3D

    PubMed  CAS  PubMed Central  Google Scholar 

  160. Harden A, Young W J. The alcoholic ferment of yeast-juice. Proc R Soc London, 1906, 78: 369–375

    Google Scholar 

  161. Warburg O, Christian W. Pyridin, the hydrogen-transferring component of the fermentation enzymes (pyridine nucleotide). Biochem Z, 1936, 287: 291, 1:CAS:528:DyaA2sXlsVWi

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physiology, University of Hong Kong, Hong Kong, China

    Hon Cheung Lee

Authors
  1. Hon Cheung Lee
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Hon Cheung Lee.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Lee, H.C. Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling. Sci. China Life Sci. 54, 699–711 (2011). https://doi.org/10.1007/s11427-011-4197-3

Download citation

  • Received: 11 May 2011

  • Accepted: 10 June 2011

  • Published: 24 July 2011

  • Issue Date: August 2011

  • DOI: https://doi.org/10.1007/s11427-011-4197-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • cyclic ADP-ribose
  • cADPR
  • NAADP
  • nicotinic acid adenine dinucleotide phosphate
  • CD38
  • ADP-ribosyl cyclase
  • Calcium mobilization and signaling
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature