Skip to main content
Log in

Effects of confined space and near vision stimulation on refractive status and vitreous chamber depth in adolescent rhesus monkeys

Science China Life Sciences Aims and scope Submit manuscript

Abstract

This study aimed to investigate the effects of sustained near vision stimulation, on the refractive development and elongation of the vitreous chamber in adolescent rhesus monkeys. A total of 12 adolescent rhesus monkeys (1.5–2.0 years old) were randomly assigned to 3 groups. In groups A (n=4) and B (n=4), monkeys were reared in close-vision cages for 8 and 4 h d−1, respectively; tiny granules were added on the cage floor to avoid visual deprivation and to encourage near gaze. In group C (n=4), monkeys were reared in open-vision cages, with non-granule food as a control. Vitreous chamber depth, refractive status, and corneal refractive power were assessed over 18 months. Paired t-test was used to compare the differences and a P-value<0.05 was considered to be statistically significant. In group A, vitreous chamber depth and optical axis elongated significantly, and refractive error shifted towards myopia during the observation period. In group B, vitreous chambers and optical axis elongated but the refractive power did not show significant changes. In group C, there was no significant elongation in vitreous chambers and optical axis, and the refractive power changed slightly towards hypermetropia. There were no significant changes in corneal refractive power in each group. Sustained near vision can promote vitreous chamber growth and induce myopic shifts in refractive power in adolescent monkeys. Our results demonstrate the potential for a primate model of near-work-related myopia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Faivre L, Gorlin R J, Wirtz M K, et al. In frame fibrillin-1 gene deletion in autosomal dominant Weill-Marchesani syndrome. J Med Genet, 2003, 40: 34–36 1:CAS:528:DC%2BD3sXht1ymtr8%3D, 10.1136/jmg.40.1.34, 12525539

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Dietz H C, Cutting G R, Pyeritz R E, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature, 1991, 352: 337–339 1:CAS:528:DyaK3MXltlegu7w%3D, 10.1038/352337a0, 1852208

    Article  PubMed  CAS  Google Scholar 

  3. Knowlton R G, Weaver E J, Struyk A F, et al. Genetic linkage analysis of hereditary arthro-ophthalmopathy (Stickler syndrome) and the type II procollagen gene. Am J Hum Genet 1989, 45: 681–688 1:STN:280:DyaK3c%2FltlGrsQ%3D%3D, 2573273

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Ojaimi E, Rose K A, Smith W, et al. Methods for a population-based study of myopia and other eye conditions in school children: the Sydney Myopia Study. Ophthalmic Epidemiol, 2005, 12: 59–69 10.1080/09286580490921296, 15848921

    Article  PubMed  Google Scholar 

  5. Morgan I, Rose K. How genetic is school myopia? Prog Retin Eye Res, 2005, 24: 1–38 10.1016/j.preteyeres.2004.06.004, 15555525

    Article  PubMed  Google Scholar 

  6. McBrien N A, Morgan I G, Mutti D O. What’s hot in myopia research-The 12th International Myopia Conference, Australia, July 2008. Optom Vis Sci, 2009, 86: 2–3 10.1097/OPX.0b013e3181940364, 19104468

    Article  PubMed  Google Scholar 

  7. Rose K A, Morgan I G, Smith W, et al. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch Ophthalmol, 2008, 126: 527–530 10.1001/archopht.126.4.527, 18413523

    Article  PubMed  Google Scholar 

  8. Rose K A, Morgan I G, Ip J, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology, 2008, 115: 1279–1285 10.1016/j.ophtha.2007.12.019, 18294691

    Article  PubMed  Google Scholar 

  9. Ip J M, Saw S M, Rose K A, et al. Role of near work in myopia: findings in a sample of Australian school children. Invest Ophthalmol Vis Sci, 2008, 49: 2903–2910 10.1167/iovs.07-0804, 18579757

    Article  PubMed  Google Scholar 

  10. Harb E, Thorn F, Troilo D. Characteristics of accommodative behavior during sustained reading in emmetropes and myopes. Vision Res, 2006, 46: 2581–2592 10.1016/j.visres.2006.02.006, 16545421

    Article  PubMed  PubMed Central  Google Scholar 

  11. Collins M J, Buehren T, Bece A, et al. Corneal optics after reading, microscopy and computer work. Acta Ophthalmol Scand, 2006, 84: 216–224 10.1111/j.1600-0420.2005.00547.x, 16637840

    Article  PubMed  Google Scholar 

  12. Cordain L, Eaton S B, Brand Miller J, et al. An evolutionary analysis of the aetiology and pathogenesis of juvenile-onset myopia. Acta Ophthalmol Scand, 2002, 80: 125–135 10.1034/j.1600-0420.2002.800203.x, 11952477

    Article  PubMed  Google Scholar 

  13. Wong L, Coggon D, Cruddas M, et al. Education, reading, and familial tendency as risk factors for myopia in Hong Kong fishermen. J Epidemiol Community Health, 1993, 47: 50–53 1:STN:280:DyaK3s7ntFOqsg%3D%3D, 10.1136/jech.47.1.50, 8436895

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Young F A, Leary G A, Baldwin W R, et al. The transmission of refractive errors within eskimo families. Am J Optom Arch Am Acad Optom, 1969, 46: 676–685 1:STN:280:DyaF1M3pt12ktQ%3D%3D, 5258732

    Article  PubMed  CAS  Google Scholar 

  15. McBrien N A, Young T L, Pang C P, et al. Myopia: Recent advances in molecular studies; prevalence, progression and risk factors; emmetropization; therapies; optical links; peripheral refraction; sclera and ocular growth; signalling cascades; and animal models. Optom Vis Sci, 2008

  16. Ip J M, Rose K A, Morgan I G, et al. Myopia and the urban environment: findings in a sample of 12-year-old Australian school children. Invest Ophthalmol Vis Sci, 2008, 49: 3858–3863 10.1167/iovs.07-1451, 18469186

    Article  PubMed  Google Scholar 

  17. Liversedge S P, Rayner K, White S J, et al. Binocular coordination of the eyes during reading. Curr Biol, 2006, 16: 1726–1729 1:CAS:528:DC%2BD28XptFSktL4%3D, 10.1016/j.cub.2006.07.051, 16950110

    Article  PubMed  CAS  Google Scholar 

  18. Gwiazda J, Thorn F, Held R. Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children. Optom Vis Sci, 2005, 82: 273–278 10.1097/01.OPX.0000159363.07082.7D, 15829855

    Article  PubMed  Google Scholar 

  19. Collins M J, Kloevekorn-Norgall K, Buehren T, et al. Regression of lid-induced corneal topography changes after reading. Optom Vis Sci, 2005, 82: 843–849 10.1097/01.opx.0000177806.13471.a5, 16189495

    Article  PubMed  Google Scholar 

  20. Buehren T, Collins M J, Carney L G. Near work induced wavefront aberrations in myopia. Vision Res, 2005, 45: 1297–1312 10.1016/j.visres.2004.10.026, 15733962

    Article  PubMed  Google Scholar 

  21. Smith E L 3rd, Bradley D V, Fernandes A, et al. Form deprivation myopia in adolescent monkeys. Optom Vis Sci, 1999, 76: 428–432 10.1097/00006324-199906000-00023, 10416938

    Article  PubMed  Google Scholar 

  22. Meyer C, Mueller M F, Duncker G I, et al. Experimental animal myopia models are applicable to human juvenile-onset myopia. Surv Ophthalmol, 1999, 44Suppl 1: S93–102 10.1016/S0039-6257(99)00091-0, 10548121

    Article  PubMed  Google Scholar 

  23. Schmid K L, Wildsoet C F. Effects on the compensatory responses to positive and negative lenses of intermittent lens wear and ciliary nerve section in chicks. Vision Res, 1996, 36: 1023–1036 1:STN:280:DyaK283pslersA%3D%3D, 10.1016/0042-6989(95)00191-3, 8736261

    Article  PubMed  CAS  Google Scholar 

  24. Schaeffel F, Glasser A, Howland H C. Accommodation, refractive error and eye growth in chickens. Vision Res, 1988, 28: 639–657 1:STN:280:DyaL1M%2FlvFartA%3D%3D, 10.1016/0042-6989(88)90113-7, 3195068

    Article  PubMed  CAS  Google Scholar 

  25. Sherman S M, Norton T T, Casagrande V A. Myopia in the lid-sutured tree shrew (Tupaia glis). Brain Res, 1977, 124: 154–157 1:STN:280:DyaE2s7jsF2htQ%3D%3D, 10.1016/0006-8993(77)90872-1, 843938

    Article  PubMed  CAS  Google Scholar 

  26. Zhong X, Ge J, Smith E L 3rd, et al. Image defocus modulates activity of bipolar and amacrine cells in macaque retina. Invest Ophthalmol Vis Sci, 2004, 45: 2065–2074 10.1167/iovs.03-1046, 15223778

    Article  PubMed  Google Scholar 

  27. Wu J, Zhong X, Nie H, et al. Influence of optical defocus and form deprivation on the emmetropization of infant rhesus monkeys. Eye Sci, 2004, 20: 118–122

    Google Scholar 

  28. Fischer A J, Morgan I G, Stell W K. Colchicine causes excessive ocular growth and myopia in chicks. Vision Res, 1999, 39: 685–697 1:CAS:528:DyaK1MXhtVyktr4%3D, 10.1016/S0042-6989(98)00178-3, 10341956

    Article  PubMed  CAS  Google Scholar 

  29. Wallman J, Turkel J, Trachtman J. Extreme myopia produced by modest change in early visual experience. Science, 1978, 201: 1249–1251 1:STN:280:DyaE1M%2FhsVarug%3D%3D, 10.1126/science.694514, 694514

    Article  PubMed  CAS  Google Scholar 

  30. Wiesel T N, Raviola E. Myopia and eye enlargement after neonatal lid fusion in monkeys. Nature, 1977, 266: 66–68 1:STN:280:DyaE2s7itlygtA%3D%3D, 10.1038/266066a0, 402582

    Article  PubMed  CAS  Google Scholar 

  31. Young F A. The effect of restrict visual space on the primate eye. Am J Ophthalmol, 1961, 52

  32. Hoyt C S, Stone R D, Fromer C, et al. Monocular axial myopia associated with neonatal eyelid closure in human infants. Am J Ophthalmol, 1981, 91: 197–200 1:STN:280:DyaL3M7jtFSqsQ%3D%3D, 7468734

    Article  PubMed  CAS  Google Scholar 

  33. Smith E L 3rd, Hung L F, Kee C S, et al. Effects of brief periods of unrestricted vision on the development of form-deprivation myopia in monkeys. Invest Ophthalmol Vis Sci, 2002, 43: 291–299 11818369

    PubMed  Google Scholar 

  34. Zadnik K, Mutti D O. How applicable are animal myopia models to human juvenile onset myopia? Vision Res, 1995, 35: 1283–1288 1:STN:280:DyaK2MzjsV2msQ%3D%3D, 10.1016/0042-6989(94)00234-D, 7610588

    Article  PubMed  CAS  Google Scholar 

  35. Zhong X W, Ge J, Chen X L, et al. Effects of experimentally induced hyperopic optical defocus on refractive status of adolescent monkeys. Chin J Ophthalmol, 2006, 42: 256–260

    Google Scholar 

  36. Zhong X W, Ge J, Nie H H, et al. The study of photorefractive keratectomy induced defocus on emmetropization in infant monkeys. Chin J Ophthalmol, 2004, 40: 258–261

    Google Scholar 

  37. Zhong X, Ge J, Nie H, et al. Compensation for experimentally induced hyperopic anisometropia in adolescent monkeys. Invest Ophthalmol Vis Sci, 2004, 45: 3373–3379 10.1167/iovs.04-0226, 15452038

    Article  PubMed  Google Scholar 

  38. Wolffsohn J S, Gilmartin B, Li R W, et al. Nearwork-induced transient myopia in preadolescent Hong Kong Chinese. Invest Ophthalmol Vis Sci, 2003, 44: 2284–2289 10.1167/iovs.02-0373, 12714672

    Article  PubMed  Google Scholar 

  39. Mallen E A, Kashyap P, Hampson K M. Transient axial length change during the accommodation response in young adults. Invest Ophthalmol Vis Sci, 2006, 47: 1251–1254 10.1167/iovs.05-1086, 16505066

    Article  PubMed  Google Scholar 

  40. Mutti D O, Mitchell G L, Moeschberger M L, et al. Parental myopia, near work, school achievement, and children’s refractive error. Invest Ophthalmol Vis Sci, 2002, 43: 3633–3640 12454029

    PubMed  Google Scholar 

  41. Smith E L 3rd, Kee C S, Ramamirtham R, et al. Peripheral vision can influence eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci, 2005, 46: 3965–3972 10.1167/iovs.05-0445, 16249469

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leng, Y., Lan, W., Yu, K. et al. Effects of confined space and near vision stimulation on refractive status and vitreous chamber depth in adolescent rhesus monkeys. Sci. China Life Sci. 53, 1433–1439 (2010). https://doi.org/10.1007/s11427-010-4099-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-010-4099-9

Keywords

Navigation