Skip to main content
Log in

Expression profiling analysis for genes related to meat quality and carcass traits during postnatal development of backfat in two pig breeds

  • Article
  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

The competitive equilibrium of fatty acid biosynthesis and oxidation in vivo determines porcine subcutaneous fat thickness (SFT) and intramuscular fat (IMF) content. Obese and lean-type pig breeds show obvious differences in adipose deposition; however, the molecular mechanism underlying this phenotypic variation remains unclear. We used pathway-focused oligo microarray studies to examine the expression changes of 140 genes associated with meat quality and carcass traits in backfat at five growth stages (1–5 months) of Landrace (a leaner, Western breed) and Taihu pigs (a fatty, indigenous, Chinese breed). Variance analysis (ANOVA) revealed that differences in the expression of 25 genes in Landrace pigs were significant (FDR adjusted permutation, P<0.05) among 5 growth stages. Gene class test (GCT) indicated that a gene-group was very significant between 2 pig breeds across 5 growth stages (PErmineJ<0.01), which consisted of 23 genes encoding enzymes and regulatory proteins associated with lipid and steroid metabolism. These findings suggest that the distinct differences in fat deposition ability between Landrace and Taihu pigs may closely correlate with the expression changes of these genes. Clustering analysis revealed a very high level of significance (FDR adjusted, P<0.01) for 2 gene expression patterns in Landrace pigs and a high level of significance (FDR adjusted, P<0.05) for 2 gene expression patterns in Taihu pigs. Also, expression patterns of genes were more diversified in Taihu pigs than those in Landrace pigs, which suggests that the regulatory mechanism of micro-effect polygenes in adipocytes may be more complex in Taihu pigs than in Landrace pigs. Based on a dynamic Bayesian network (DBN) model, gene regulatory networks (GRNs) were reconstructed from time-series data for each pig breed. These two GRNs initially revealed the distinct differences in physiological and biochemical aspects of adipose metabolism between the two pig breeds; from these results, some potential key genes could be identified. Quantitative, real-time RT-PCR (QRT-PCR) was used to verify the microarray data for five modulated genes, and a good correlation between the two measures of expression was observed for both 2 pig breeds at different growth stages (R=0.874±0.071). These results highlight some possible candidate genes for porcine fat characteristics and provide some data on which to base further study of the molecular basis of adipose metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fiedler I, Nürnberg K, Hardge T, et al. Phenotypic variations of muscle fibre and intramuscular fat traits in longissimus muscle of F2 population Duroc×Berlin Miniature Pig and relationships to meat quality. Meat Sci, 2003, 63: 131–139, 10.1016/S0309-1740(02)00075-X, 10.1016/S0309-1740(02)00075-X

    Article  PubMed  Google Scholar 

  2. Plastow G S, Carrión D, Gil M, et al. Quality pork genes and meat production. Meat Sci, 2005, 70: 409–421, 10.1016/j.meatsci.2004.06.025, 1:CAS:528:DC%2BD2MXktVKgtrc%3D, 10.1016/j.meatsci.2004.06.025, 1:CAS:528:DC%2BD2MXktVKgtrc%3D

    Article  PubMed  CAS  Google Scholar 

  3. Suzuki K, Irie M, Kadowaki H, et al. Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content. J Anim Sci, 2005, 83: 2058–2065, 16100060, 1:CAS:528:DC%2BD2MXpsFGit78%3D, 16100060, 1:CAS:528:DC%2BD2MXpsFGit78%3D

    PubMed  CAS  Google Scholar 

  4. Ailhaud G. Adipose tissue as a secretory organ: From adipogenesis to the metabolic syndrome. C R Biol, 2006, 329: 570–577, 16860275, 10.1016/j.crvi.2005.12.012, 1:CAS:528:DC%2BD28XntVSqu7s%3D, 16860275, 10.1016/j.crvi.2005.12.012, 1:CAS:528:DC%2BD28XntVSqu7s%3D

    Article  PubMed  CAS  Google Scholar 

  5. Editorial Committee of “Pig Breeds in China”. Pig Breeds in China (in Chinese). Shanghai: Scientific & Technical Publishing House, 1986. 155–160

    Google Scholar 

  6. Khatri P, Bhavsar P, Bawa G, et al. Onto-Tools: An ensemble of web-accessible, ontology-based tools for the functional design and interpretation of high-throughput gene expression experiments. Nucleic Acids Res, 2004, 32(Web Server issue): W449–W456, 15215428, 10.1093/nar/gkh409, 1:CAS:528:DC%2BD2cXlvFKnu7o%3D, 15215428, 10.1093/nar/gkh409, 1:CAS:528:DC%2BD2cXlvFKnu7o%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Doms A, Schroeder M. GoPubMed: Exploring PubMed with the Gene Ontology. Nucleic Acids Res, 2005, 33(Web Server issue): W783–W786, 15980585, 10.1093/nar/gki470, 1:CAS:528:DC%2BD2MXlslyqtL0%3D, 15980585, 10.1093/nar/gki470, 1:CAS:528:DC%2BD2MXlslyqtL0%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. Yang Y H, Speed T. Design issues for cDNA microarray experiments. Nat Rev Genet, 2002, 3: 579–588, 12154381, 1:CAS:528:DC%2BD38XlslamsLs%3D, 12154381, 1:CAS:528:DC%2BD38XlslamsLs%3D

    PubMed  CAS  Google Scholar 

  9. Yang Y H, Dudoit S, Luu P, et al. Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res, 2002, 30(4): e15–e24, 11842121, 10.1093/nar/30.4.e15, 11842121, 10.1093/nar/30.4.e15

    Article  PubMed Central  PubMed  Google Scholar 

  10. Xia X, McClelland M, Wang Y. WebArray: An online platform for microarray data analysis. BMC Bioinformatics, 2005, 6: 306–311, 16371165, 10.1186/1471-2105-6-306, 16371165, 10.1186/1471-2105-6-306

    Article  PubMed Central  PubMed  Google Scholar 

  11. Smyth G K, Michaud J, Scott H S. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics, 2005, 21: 2067–2075, 15657102, 10.1093/bioinformatics/bti270, 1:CAS:528:DC%2BD2MXjsl2nsLo%3D, 15657102, 10.1093/bioinformatics/bti270, 1:CAS:528:DC%2BD2MXjsl2nsLo%3D

    Article  PubMed  CAS  Google Scholar 

  12. Troyanskaya O, Cantor M, Sherlock G, et al. Missing value estimation methods for DNA microarrays. Bioinformatics, 2001, 17: 520–525, 11395428, 10.1093/bioinformatics/17.6.520, 1:CAS:528:DC%2BD3MXltFOgsLY%3D, 11395428, 10.1093/bioinformatics/17.6.520, 1:CAS:528:DC%2BD3MXltFOgsLY%3D

    Article  PubMed  CAS  Google Scholar 

  13. Kerr M K, Martin M, Churchill G A. Analysis of variance for gene expression microarray data. J Comput Biol, 2000, 7: 819–837, 11382364, 10.1089/10665270050514954, 1:CAS:528:DC%2BD3MXis1Kktrc%3D, 11382364, 10.1089/10665270050514954, 1:CAS:528:DC%2BD3MXis1Kktrc%3D

    Article  PubMed  CAS  Google Scholar 

  14. Cui X, Hwang J T, Qiu J, et al. Improved statistical tests for differential gene expression by shrinking variance components estimates. Biostatistics, 2005, 6: 59–75, 15618528, 10.1093/biostatistics/kxh018, 15618528, 10.1093/biostatistics/kxh018

    Article  PubMed  Google Scholar 

  15. Lee H K, Braynen W, Keshav K, et al. ErmineJ: Tool for functional analysis of gene expression data sets. BMC Bioinformatics, 2005, 6: 269–276, 16280084, 10.1186/1471-2105-6-269, 16280084, 10.1186/1471-2105-6-269

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ernst J, Bar-Joseph Z. STEM: A tool for the analysis of short time series gene expression data. BMC Bioinformatics, 2006, 7: 191–121, 16597342, 10.1186/1471-2105-7-191, 16597342, 10.1186/1471-2105-7-191

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wu C C, Huang H C, Juan H F, et al. GeneNetwork: An interactive tool for reconstruction of genetic networks using microarray data. Bioinformatics, 2004, 20: 3691–3693, 15271782, 10.1093/bioinformatics/bth428, 1:CAS:528:DC%2BD2cXhtVOjsr%2FL, 15271782, 10.1093/bioinformatics/bth428, 1:CAS:528:DC%2BD2cXhtVOjsr%2FL

    Article  PubMed  CAS  Google Scholar 

  18. Dojer N, Gambin A, Mizera A, et al. Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinformatics, 2006, 7: 249–259, 16681847, 10.1186/1471-2105-7-249, 16681847, 10.1186/1471-2105-7-249

    Article  PubMed Central  PubMed  Google Scholar 

  19. Erkens T, Van Poucke M, Vandesompele J, et al. Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol, 2006, 6: 41–48, 17026777, 10.1186/1472-6750-6-41, 17026777, 10.1186/1472-6750-6-41

    Article  PubMed Central  PubMed  Google Scholar 

  20. Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol, 2002, 3: 34–45, 10.1186/gb-2002-3-7-research0034, 10.1186/gb-2002-3-7-research0034

    Article  Google Scholar 

  21. Anderson D B, Kauffman R G. Celluar and enzymatic changes in porcine adipose tissue during growth. J Lipid Res, 1973, 14: 160–168, 4698264, 1:CAS:528:DyaE3sXht1Wquro%3D, 4698264, 1:CAS:528:DyaE3sXht1Wquro%3D

    PubMed  CAS  Google Scholar 

  22. Kolstad K. Fat deposition and distribution measured by computer tomography in three genetic groups of pigs. Livest Prod Sci, 2001, 67: 281–292, 10.1016/S0301-6226(00)00195-0, 10.1016/S0301-6226(00)00195-0

    Article  Google Scholar 

  23. Datta S, Datta S. Empirical Bayes screening of many P values with applications to microarray studies. Bioinformatics, 2005, 21: 1987–1994, 15691856, 10.1093/bioinformatics/bti301, 1:CAS:528:DC%2BD2MXjsl2nt7o%3D, 15691856, 10.1093/bioinformatics/bti301, 1:CAS:528:DC%2BD2MXjsl2nt7o%3D

    Article  PubMed  CAS  Google Scholar 

  24. Allison D B, Cui X, Page G P, et al. Microarray data analysis: From disarray to consolidation and consensus. Nat Rev Genet, 2006, 7: 55–65, 16369572, 10.1038/nrg1749, 1:CAS:528:DC%2BD2MXhtlanu73F, 16369572, 10.1038/nrg1749, 1:CAS:528:DC%2BD2MXhtlanu73F

    Article  PubMed  CAS  Google Scholar 

  25. Yang H, Churchill G. Estimating P values in small microarray experiments. Bioinformatics, 2007, 23: 38–43, 17077100, 10.1093/bioinformatics/btl548, 1:CAS:528:DC%2BD28XhtlGktL3M, 17077100, 10.1093/bioinformatics/btl548, 1:CAS:528:DC%2BD28XhtlGktL3M

    Article  PubMed  CAS  Google Scholar 

  26. Chmurzyńska A. The multigene family of fatty acid-binding proteins (FABPs): Function, structure and polymorphism. J Appl Genet, 2006, 47: 39–48, 16424607, 16424607

    Article  PubMed  Google Scholar 

  27. Arnyasi M, Grindflek E, Jávor A, et al. Investigation of two candidate genes for meat quality traits in a quantitative trait locus region on SSC6: The porcine short heterodimer partner and heart fatty acid binding protein genes. J Anim Breed Genet, 2006, 123: 198–203, 16706925, 10.1111/j.1439-0388.2006.00588.x, 1:CAS:528:DC%2BD28XmsVGmtbc%3D, 16706925, 10.1111/j.1439-0388.2006.00588.x, 1:CAS:528:DC%2BD28XmsVGmtbc%3D

    Article  PubMed  CAS  Google Scholar 

  28. Li B, Zerby H N, Lee K. Heart fatty acid binding protein is up-regulated during porcine adipocyte development. J Anim Sci, 2007, 85: 1651–1659, 17431053, 10.2527/jas.2006-755, 1:CAS:528:DC%2BD2sXntV2ms7c%3D, 17431053, 10.2527/jas.2006-755, 1:CAS:528:DC%2BD2sXntV2ms7c%3D

    Article  PubMed  CAS  Google Scholar 

  29. Du J K, Huang Q Y. Research progress of lipoprotein lipase gene. Yi Chuan (in Chinese), 2007, 29: 8–16, 1:CAS:528:DC%2BD1cXjsFKqsr0%3D, 1:CAS:528:DC%2BD1cXjsFKqsr0%3D

    Article  CAS  Google Scholar 

  30. Hsu W C, Hung H C, Tong L, et al. Dual functional roles of ATP in the human mitochondrial malic enzyme. Biochemistry, 2004, 43: 7382–7390, 15182181, 10.1021/bi049600r, 1:CAS:528:DC%2BD2cXktlWmu7w%3D, 15182181, 10.1021/bi049600r, 1:CAS:528:DC%2BD2cXktlWmu7w%3D

    Article  PubMed  CAS  Google Scholar 

  31. Vidal O, Varona L, Oliver M A, et al. Malic enzyme 1 genotype is associated with backfat thickness and meat quality traits in pigs. Anim Genet, 2006, 37: 28–32, 16441292, 10.1111/j.1365-2052.2005.01366.x, 1:CAS:528:DC%2BD28XitVCmsLw%3D, 16441292, 10.1111/j.1365-2052.2005.01366.x, 1:CAS:528:DC%2BD28XitVCmsLw%3D

    Article  PubMed  CAS  Google Scholar 

  32. Sampath H, Miyazaki M, Dobrzyn A, et al. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. J Biol Chem, 2007, 282: 2483–2493, 17127673, 10.1074/jbc.M610158200, 1:CAS:528:DC%2BD2sXmsVehtg%3D%3D, 17127673, 10.1074/jbc.M610158200, 1:CAS:528:DC%2BD2sXmsVehtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  33. Doran O, Moule S K, Teye G A, et al. A reduced protein diet induces stearoyl-CoA desaturase protein expression in pig muscle but not in subcutaneous adipose tissue: Relationship with intramuscular lipid formation. Br J Nutr, 2006, 95: 609–617, 16512947, 10.1079/BJN20051526, 1:CAS:528:DC%2BD28XjsVGlu7o%3D, 16512947, 10.1079/BJN20051526, 1:CAS:528:DC%2BD28XjsVGlu7o%3D

    Article  PubMed  CAS  Google Scholar 

  34. Brand M D, Esteves T C. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab, 2005, 2: 85–93, 16098826, 10.1016/j.cmet.2005.06.002, 1:CAS:528:DC%2BD2MXps12ht70%3D, 16098826, 10.1016/j.cmet.2005.06.002, 1:CAS:528:DC%2BD2MXps12ht70%3D

    Article  PubMed  CAS  Google Scholar 

  35. Li Y, Li H, Zhao X, et al. UCP2 and 3 deletion screening and distribution in 15 pig breeds. Biochem Genet, 2007, 45: 103–111, 17221299, 10.1007/s10528-006-9063-9, 1:CAS:528:DC%2BD2sXhs1Whsrc%3D, 17221299, 10.1007/s10528-006-9063-9, 1:CAS:528:DC%2BD2sXhs1Whsrc%3D

    Article  PubMed  CAS  Google Scholar 

  36. Li C. Genetics and regulation of angiopoietin-like proteins 3 and 4. Curr Opin Lipidol, 2006, 17: 152–156, 16531751, 10.1097/01.mol.0000217896.67444.05, 1:CAS:528:DC%2BD28Xitlakt70%3D, 16531751, 10.1097/01.mol.0000217896.67444.05, 1:CAS:528:DC%2BD28Xitlakt70%3D

    Article  PubMed  CAS  Google Scholar 

  37. Feng S Q, Chen X D, Xia T, et al. Cloning, chromosome mapping and expression characteristics of porcine ANGPTL3 and −4. Cytogenet Genome Res, 2006, 114: 44–49, 16717449, 10.1159/000091927, 1:CAS:528:DC%2BD28XkvVOitb4%3D, 16717449, 10.1159/000091927, 1:CAS:528:DC%2BD28XkvVOitb4%3D

    Article  PubMed  CAS  Google Scholar 

  38. Eisen M B, Spellman P T, Brown P O, et al. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 1998, 95: 14863–14868, 9843981, 10.1073/pnas.95.25.14863, 1:CAS:528:DyaK1cXotVGmurk%3D, 9843981, 10.1073/pnas.95.25.14863, 1:CAS:528:DyaK1cXotVGmurk%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Tavazoie S, Hughes J D, Campbell M J, et al. Systematic determination of genetic network architecture. Nat Genet, 1999, 22: 281–285, 10391217, 10.1038/10343, 1:CAS:528:DyaK1MXkt1eqsbY%3D, 10391217, 10.1038/10343, 1:CAS:528:DyaK1MXkt1eqsbY%3D

    Article  PubMed  CAS  Google Scholar 

  40. Tamayo P, Slonim D, Mesirov J, et al. Interpreting patterns of gene expression with self organizing maps: methods and applications to hematopoietic differentiation. Proc Natl Acad Sci USA, 1999, 96: 2907–2912, 10077610, 10.1073/pnas.96.6.2907, 1:CAS:528:DyaK1MXhvFyks7k%3D, 10077610, 10.1073/pnas.96.6.2907, 1:CAS:528:DyaK1MXhvFyks7k%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Ramoni M F, Sebastiani P, Kohane I S. Cluster analysis of gene expression dynamics. Proc Natl Acad Sci USA, 2002, 99: 9121–9126, 12082179, 10.1073/pnas.132656399, 1:CAS:528:DC%2BD38XlsVGhu7g%3D, 12082179, 10.1073/pnas.132656399, 1:CAS:528:DC%2BD38XlsVGhu7g%3D

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Bar-Joseph Z, Gerber G K, Gifford D K, et al. Continuous representations of time-series gene expression data. J Comput Biol, 2003, 10: 341–356, 12935332, 10.1089/10665270360688057, 1:CAS:528:DC%2BD3sXms1ajt7k%3D, 12935332, 10.1089/10665270360688057, 1:CAS:528:DC%2BD3sXms1ajt7k%3D

    Article  PubMed  CAS  Google Scholar 

  43. Schliep A, Schönhuth A, Steinhoff C. Using hidden Markov models to analyze gene expression time course data. Bioinformatics, 2003, 19(Suppl 1): 255–263, 10.1093/bioinformatics/btg1036, 10.1093/bioinformatics/btg1036

    Article  Google Scholar 

  44. Ernst J, Nau G J, Bar-Joseph Z. Clustering short time series gene expression data. Bioinformatics, 2005, 21(Suppl 1): 159–168, 10.1093/bioinformatics/bti1022, 10.1093/bioinformatics/bti1022

    Article  Google Scholar 

  45. Raeymaekers L. Dynamics of Boolean networks controlled by biologically meaningful functions. J Theor Biol, 2002, 218: 331–341, 12381434, 10.1006/jtbi.2002.3081, 1:STN:280:DC%2BD38nisVGhsA%3D%3D, 12381434, 10.1006/jtbi.2002.3081, 1:STN:280:DC%2BD38nisVGhsA%3D%3D

    Article  PubMed  CAS  Google Scholar 

  46. D’haeseleer P, Wen X, Fuhrman S, et al. Linear modeling of mRNA expression levels during CNS development and injury. Pac Symp Biocomput, 1999, 4: 41–52

    Google Scholar 

  47. Werhli A V, Grzegorczyk M, Husmeier D. Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, Graphical Gaussian models and Bayesian networks. Bioinformatics, 2006, 22: 2523–2531, 16844710, 10.1093/bioinformatics/btl391, 1:CAS:528:DC%2BD28XhtVyns77J, 16844710, 10.1093/bioinformatics/btl391, 1:CAS:528:DC%2BD28XhtVyns77J

    Article  PubMed  CAS  Google Scholar 

  48. de Hoon M J, Imoto S, Kobayashi K, et al. Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations. Pac Symp Biocomput, 2003, 8: 17–28

    Google Scholar 

  49. Zhang F, Chen Y, Heiman M, et al. Leptin: Structure, function and biology. Vitam Horm, 2005, 71: 345–372, 16112274, 10.1016/S0083-6729(05)71012-8, 1:CAS:528:DC%2BD28XotlSiurc%3D, 16112274, 10.1016/S0083-6729(05)71012-8, 1:CAS:528:DC%2BD28XotlSiurc%3D

    Article  PubMed  CAS  Google Scholar 

  50. O’Rourke L, Yeaman S J, Shepherd P R. Insulin and leptin acutely regulate cholesterol ester metabolism in macrophages by novel signaling pathways. Diabetes, 2001, 50: 955–961, 11334438, 10.2337/diabetes.50.5.955, 1:CAS:528:DC%2BD3MXkvFSgtbs%3D, 11334438, 10.2337/diabetes.50.5.955, 1:CAS:528:DC%2BD3MXkvFSgtbs%3D

    Article  PubMed  Google Scholar 

  51. Rance K A, Johnstone A M, Murison S, et al. Plasma leptin levels are related to body composition, sex, insulin levels and the A55V polymorphism of the UCP2 gene. Int J Obes, 2007, 31: 1311–1318, 10.1038/sj.ijo.0803535, 1:CAS:528:DC%2BD2sXot1Cru7o%3D, 10.1038/sj.ijo.0803535, 1:CAS:528:DC%2BD2sXot1Cru7o%3D

    Article  CAS  Google Scholar 

  52. Sukonina V, Lookene A, Olivecrona T, et al. Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc Natl Acad Sci USA, 2006, 103: 17450–17455, 17088546, 10.1073/pnas.0604026103, 1:CAS:528:DC%2BD28Xht1Kqu7nI, 17088546, 10.1073/pnas.0604026103, 1:CAS:528:DC%2BD28Xht1Kqu7nI

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  53. Qin L X, Beyer R P, Hudson F N, et al. Evaluation of methods for oligonucleotide array data via quantitative real-time PCR. BMC Bioinformatics, 2006, 7: 23–34, 16417622, 10.1186/1471-2105-7-23, 16417622, 10.1186/1471-2105-7-23

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XueWei Li.

Additional information

Contributed equally to this wrok

Supported by the Program for Changjiang Scholars and Innovative Research Team in University of Chinese Ministry of Education (Grant No. IRT0555-6), Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20060626003), National Sci &Tech Support Program (Grant No. 2007BAD51B03), Project of Provincial Eleventh 5 Years’ Animal Breeding of Sichuan Province (Grant No. 2006YZGG-15), and Specialized Research Fund of Chinese Ministry of Agriculture (Grant No. NYHYZX07-034)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Zhu, L., Li, X. et al. Expression profiling analysis for genes related to meat quality and carcass traits during postnatal development of backfat in two pig breeds. SCI CHINA SER C 51, 718–733 (2008). https://doi.org/10.1007/s11427-008-0090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0090-0

Keywords

Navigation