Skip to main content
Log in

The relaxing ori-ter balance of Mycoplasma genomes

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Mycoplasma are wall-less bacteria with small genomes, which are thought to have resulted from massive genome reductive processes, during which the ori-ter balance may be disrupted. For technical difficulties, ori and ter have been located only in a few Mycoplasma strains. Using the Z curve method, we were able to locate turning points on the Mycoplasma genomes, with the minimum and maximum points co-locating with ori or ter in the reference genomes. Assuming Z curve correctly located ori and ter, we calculated the distances from ori to ter in both directions on the circular genome and calculated the ori-ter balance status. The Mycoplasma genomes were not balanced, possibly as a result of close association of Mycoplasma with hosts, where there would be no other microbes for Mycoplasma to compete with for nutrients, so fastest possible growth related to balanced genomes might not be needed by Mycoplasma, leading to a relaxing ori-ter balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hill C W, Gray J A. Effects of chromosomal inversion on cell fitness in Escherichia coli K-12. Genetics, 1988, 119(4): 771–778

    PubMed  CAS  Google Scholar 

  2. Fleischmann R D, Adams M D, White O, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 1995, 269(5223): 496–512

    Article  PubMed  CAS  Google Scholar 

  3. Liu S L, Sanderson K E. Rearrangements in the genome of the bacterium Salmonella typhi. Proc Natl Acad Sci USA, 1995, 92(4): 1018–1022

    Article  PubMed  CAS  Google Scholar 

  4. Liu S L, Sanderson K E. Highly plastic chromosomal organization in Salmonella typhi. Proc Natl Acad Sci USA, 1996, 93(19): 10303–10308

    Article  PubMed  CAS  Google Scholar 

  5. Kothapalli S, Nair S, Alokam S, et al. Diversity of genome structure in Salmonella enterica serovar Typhi populations. J Bacteriol, 2005, 187(8): 2638–2650

    Article  PubMed  CAS  Google Scholar 

  6. Liu G R, Liu W Q, Johnston R N, et al. Genome plasticity and ori-ter rebalancing in Salmonella typhi. Mol Biol Evol, 2006, 23(2): 365–371

    Article  PubMed  Google Scholar 

  7. Liu S L, Sanderson K E. Genomic cleavage map of Salmonella typhi Ty2. J Bacteriol, 1995, 177(17): 5099–5107

    PubMed  CAS  Google Scholar 

  8. Parkhill J, Dougan G, James KD, et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature, 2001, 413(6858): 848–852

    Article  PubMed  CAS  Google Scholar 

  9. Deng W, Liou S R, Plunkett G 3rd, et al. Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol, 2003, 185(7): 2330–2337

    Article  PubMed  CAS  Google Scholar 

  10. McClelland M, Sanderson K E, Spieth J, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 2001, 413(6858): 852–856

    Article  PubMed  CAS  Google Scholar 

  11. McClelland M, Sanderson K E, Clifton S W, et al. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet, 2004, 36(12): 1268–1274

    Article  PubMed  CAS  Google Scholar 

  12. Liu S L, Sanderson K E. The chromosome of Salmonella paratyphi A is inverted by recombination between rrnH and rrnG. J Bacteriol, 1995, 177(22): 6585–6592

    PubMed  CAS  Google Scholar 

  13. Song J, Ware A, Liu S L. Wavelet to predict bacterial ori and ter: A tendency towards a physical balance. BMC Genomics, 2003, 4(1): 17

    Article  PubMed  Google Scholar 

  14. Woese C R, Maniloff J, Zablen L B. Phylogenetic analysis of the mycoplasmas. Proc Natl Acad Sci USA, 1980, 77(1): 494–498

    Article  PubMed  CAS  Google Scholar 

  15. Oshima K, Kakizawa S, Nishigawa H, et al. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet, 2004, 36(1): 27–29

    Article  PubMed  CAS  Google Scholar 

  16. Fraser C M, Gocayne J D, White O, et al. The minimal gene complement of Mycoplasma genitalium. Science, 1995, 270(5235): 397–403

    Article  PubMed  CAS  Google Scholar 

  17. Chambaud I, Heilig R, Ferris S, et al. The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis. Nucleic Acids Res, 2001, 29(10): 2145–2153

    Article  PubMed  CAS  Google Scholar 

  18. Papazisi L, Gorton T S, Kutish G, et al. The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain R(low). Microbiology, 2003, 149(Pt 9): 2307–2316

    Article  PubMed  CAS  Google Scholar 

  19. Minion F C, Lefkowitz E J, Madsen M L, et al. The genome sequence of Mycoplasma hyopneumoniae strain 232, the agent of swine mycoplasmosis. J Bacteriol, 2004, 186(21): 7123–7133

    Article  PubMed  CAS  Google Scholar 

  20. Bird R E, Louarn J, Martuscelli J, et al. Origin and sequence of chromosome replication in Escherichia coli. J Mol Biol, 1972, 70(3): 549–566

    Article  PubMed  CAS  Google Scholar 

  21. Marians K J. Prokaryotic DNA replication. Annu Rev Biochem, 1992, 61: 673–719

    Article  PubMed  CAS  Google Scholar 

  22. Marczynski G T, Shapiro L. Bacterial chromosome origins of replication. Curr Opin Genet Dev, 1993, 3(5): 775–782

    Article  PubMed  CAS  Google Scholar 

  23. Yoshikawa H, Ogasawara N. Structure and function of DnaA and the DnaA-box in eubacteria: Evolutionary relationships of bacterial replication origins. Mol Microbiol 1991, 5(11):2589–2597.

    Article  PubMed  CAS  Google Scholar 

  24. Ye F, Renaudin J, Bove JM, et al. Cloning and sequencing of the replication origin (oriC) of the Spiroplasma citri chromosome and construction of autonomously replicating artificial plasmids. Curr Microbiol, 1994, 29(1): 23–29

    Article  PubMed  CAS  Google Scholar 

  25. Zhang C T, Zhang R. Analysis of distribution of bases in the coding sequences by a diagrammatic technique. Nucleic Acids Res, 1991, 19(22): 6313–6317

    Article  PubMed  CAS  Google Scholar 

  26. Zhang R, Zhang C. Z curves, an intutive tool for visualizing and analyzing the DNA sequences. J Biomol Struct Dyn, 1994, 11(4): 767–782

    PubMed  CAS  Google Scholar 

  27. Zhang R, Zhang C. Single replication origin of the archaeon Methanosarcina mazei revealed by the Z curve method. Biophys Res Commun, 2002, 297(2): 396–400

    Article  CAS  Google Scholar 

  28. Zhang R, Zhang C. Multiple replication origins of the archaeon Halobacterium species NRC-1. Biochem Biophys Res Commun, 2003, 302(4): 728–734

    Article  PubMed  CAS  Google Scholar 

  29. Zhang R, Zhang C. Identification of replication origins in the genome of the methanogenic archaeon, Methanocaldococcus jannaschii. Extremophiles, 2004, 8(3): 253–258

    Article  PubMed  CAS  Google Scholar 

  30. Kunst F, Ogasawara N, Moszer I, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 1997, 390(6657): 249–256

    Article  PubMed  CAS  Google Scholar 

  31. Cordova CM, Lartigue C, Sirand-Pugnet P, et al. Identification of the origin of replication of the Mycoplasma pulmonis chromosome and its use in oriC replicative plasmids. J Bacteriol, 2002, 184(19): 5426–5 435

    Article  PubMed  CAS  Google Scholar 

  32. Vasconcelos A T, Ferreira H B, Bizarro C V, et al. Swine and poultry pathogens: The complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae. J Bacteriol, 2005, 187(16): 5568–5577

    Article  PubMed  CAS  Google Scholar 

  33. Sasaki Y, Ishikawa J, Yamashita A, et al. The complete genomic sequence of Mycoplasma penetrans, an intracellular bacterial pathogen in humans. Nucleic Acids Res, 2002, 30(23): 5293–5300

    Article  PubMed  CAS  Google Scholar 

  34. Himmelreich R, Hilbert H, Plagens H, et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res, 1996, 24(22): 4420–4449

    Article  PubMed  CAS  Google Scholar 

  35. Jaffe J D, Stange-Thomann N, Smith C, et al. The complete genome and proteome of Mycoplasma mobile. Genome Res 2004, 14(8): 1447–1461

    Article  PubMed  CAS  Google Scholar 

  36. Westberg J, Persson A, Holmberg A, et al. The genome sequence of Mycoplasma mycoides subsp. mycoides SC type strain PG1T, the causative agent of contagious bovine pleuropneumonia (CBPP). Genome Res, 2004, 14(2): 221–227

    Article  PubMed  CAS  Google Scholar 

  37. Blattner F R, Plunkett G 3rd, Bloch CA, et al. The complete genome sequence of Escherichia coli K-12. Science, 1997, 277(5331): 1453–1474

    Article  PubMed  CAS  Google Scholar 

  38. Chiu C H, Tang P, Chu C, et al. The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res, 2005, 33(5): 1690–1698

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu ShuLin.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30370774), the 985 Project of Peking University Health Science Center, and the Discovery Grant from Natural Sciences and Engineering Research Council of Canada (Grant No. 216912-00)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Liu, S. The relaxing ori-ter balance of Mycoplasma genomes. Sci. China Ser. C-Life Sci. 51, 182–189 (2008). https://doi.org/10.1007/s11427-008-0017-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-008-0017-9

Keywords

Navigation