Skip to main content
Log in

Latency represents sound frequency in mouse IC

  • Published:
Science in China Series C: Life Sciences Aims and scope Submit manuscript

Abstract

Frequency is one of the fundamental parameters of sound. The frequency of an acoustic stimulus can be represented by a neural response such as spike rate, and/or first spike latency (FSL) of a given neuron. The spike rates/frequency function of most neurons changes with different acoustic amplitudes, whereas FSL/frequency function is highly stable. This implies that FSL might represent the frequency of a sound stimulus more efficiently than spike rate. This study involved representations of acoustic frequency by spike rate and FSL of central inferior colliculus (IC) neurons responding to free-field pure-tone stimuli. We found that the FSLs of neurons responding to characteristic frequency (CF) of sound stimulus were usually the shortest, regardless of sound intensity, and that spike rates of most neurons showed a variety of function according to sound frequency, especially at high intensities. These results strongly suggest that FSL of auditory IC neurons can represent sound frequency more precisely than spike rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rieke F, Warland D, Steveninck R, et al. Spikes: Exploring the Neural Code. Cambridge: MIT Press, 1996

    Google Scholar 

  2. Wright B D, Sen K, Bialek W, et al. Spike timing and the coding of naturalistic sounds in a central area of songbirds. In: Dietterich T G, Becker S, Ghahramani Z, eds. Advances in Neural Information Processing Systems 14, Cambridge: MIT Press, 2002. 309–316

    Google Scholar 

  3. Panzeri S, Pola G, Petersen R S. Coding of sensory signals by neuronal populations: The role of correlated activity. Neuroscientist, 2003, 9(3): 175–180

    Article  PubMed  Google Scholar 

  4. Wiener M C, Richmond B J. Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model. J Neurosci, 2003, 23(6): 2394–2406

    PubMed  CAS  Google Scholar 

  5. Mickey B J, Middlebrooks J C. Representation of auditory space by cortical neurons in awake cats. J Neurosci, 2003, 23(25): 8649–8663

    PubMed  CAS  Google Scholar 

  6. Heil P. First-spike latency of auditory neurons revisited. Curr Opinion in Neurobiol, 2004, 14(4): 461–467

    Article  CAS  Google Scholar 

  7. Guyonneau R, Rullen R, Thorpe S J. Neurons tune to the earliest spikes through STDP. Neural Comput, 2005, 17(4): 859–879

    Article  PubMed  Google Scholar 

  8. Rullen R, Guyonneau R, Thorpe S J. Spike times make sense. TRENDS in Neurosci, 2005, 28(1): 1–4

    Article  Google Scholar 

  9. Heil P. Auditory cortical onset responses revisited. I. First spike timing. J Neurophysiol, 1997a, 77(5): 2616–2641

    PubMed  CAS  Google Scholar 

  10. Heil P. Auditory cortical onset responses revisited. II. Response strength. J Neurophysiol, 1997b, 77(5): 2642–2660

    PubMed  CAS  Google Scholar 

  11. DeWeese M R, Wehr M, Zador A M. Binary spiking in auditory cortex. J Neurosci, 2003, 23(21): 7940–7949

    PubMed  CAS  Google Scholar 

  12. Mainen Z F, Sejnowski T J. Reliability of spike timing in neocortical neurons. Science, 1995, 268(5216): 1503–1506

    Article  PubMed  CAS  Google Scholar 

  13. Fricker D, Miles R. EPSP amplification and the precision of spike timing in hippocampal neurons. Neuron, 2000, 28(2): 559–569

    Article  PubMed  CAS  Google Scholar 

  14. Brugge J F, Anderson D J, Hind J E, et al. Time structure of discharges in single auditory nerve fibers of the squirrel monkey in response to complex periodic sounds. J Neurophysiol, 1969, 32(3): 386–401

    PubMed  CAS  Google Scholar 

  15. Zurita P, Villa A E, de Ribaupierre Y, et al. Changes of single unit activity in the cat’s auditory thalamus and cortex associated to different anesthetic conditions. Neurosci Res, 1994, 19(3): 303–316

    Article  PubMed  CAS  Google Scholar 

  16. Irvine D R F. Physiology of the auditory brainstem. In: The Mammalian Auditory Pathway: Neurophysiology. Heidelberg: Springer-Verlag, 1991. 156–158

    Google Scholar 

  17. Phillips D P, Irvine D R. Responses of single neurons in physiologically defined area AI of cat cerebral cortex: Sensitivity to interaural intensity differences. Hear Res, 1981, 4(3–4): 299–307

    Article  PubMed  CAS  Google Scholar 

  18. Rhode W S, Smith P H. Encoding timing and intensity in the ventral cochlear nucleus of the cat. J Neurophysiol, 1986, 56(2): 261–286

    PubMed  CAS  Google Scholar 

  19. Xia Y F, Qi Z H, Shen J X. Neural representation of sound duration in the inferior colliculus of the mouse. Acta Otolaryngol, 2000, 120(5): 638–643

    Article  PubMed  CAS  Google Scholar 

  20. Xiao Z, Suga N. Reorganization of the auditory cortex specialized for echo-delay processing in the mustached bat. Proc Natl Acad Sci USA, 2004, 101(6): 1769–1774

    Article  PubMed  CAS  Google Scholar 

  21. Aitkin L M, Anderson D J, Brugge J F. Tonotopic organization and discharge characteristics of single neurons in nuclei of the lateral lemniscus of the cat. J Neurophysiol, 1970, 33(3): 421–440

    PubMed  CAS  Google Scholar 

  22. Kitzes L M, Gibson M M, Rose J E, et al. Initial discharge latency and threshold considerations for some neurons in cochlear nuclear complex of the cat. J Neurophysiol, 1978, 41(5):1165–82

    PubMed  CAS  Google Scholar 

  23. Heil P, Irvine D R. First-spike timing of auditory-nerve fibers and comparison with auditory cortex. J Neurophysiol, 1997, 78(5): 2438–2454

    PubMed  CAS  Google Scholar 

  24. Phillips D P. Factors shaping the response latencies of neurons in the cat’s auditory cortex. Behav Brain Res, 1998, 93(1–2): 33–41

    Article  PubMed  CAS  Google Scholar 

  25. Casseday J H, Ehrlich D, Covey E. Neural measurement of sound duration: Control by excitatory-inhibitory interactions in the inferior colliculus. J Physiol American, 2000, 84(3): 1475–1487

    CAS  Google Scholar 

  26. Eggermont J J. Azimuth coding in primary auditory cortex of the cat. I. Spike synchrony versus spike count representation. J Neurophysiol, 1998, 80(4): 2133–2150

    PubMed  CAS  Google Scholar 

  27. Eggermont J J. Azimuth coding in primary auditory cortex of the cat. II. Relative latency and interspike interval representation. J Neurophysiol, 1998, 80(4): 2151–2161

    PubMed  CAS  Google Scholar 

  28. Reale R A, Jenison R L, Brugge J F. Directional sensitivity of neurons in the primary auditory (AI) cortex: Effects of soundsource intensity level. J Neurophysiol, 2003, 89(2): 1024–1038

    Article  PubMed  Google Scholar 

  29. Furukawa S, Middlebrooks J C. Cortical representation of auditory space: Information-bearing features of spike patterns. J Neurophysiol, 2002, 87(4): 1749–1762

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao ZhongJu or Shen JunXian.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 30170250, 90208012, and 30270440), the Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-SW-602-2), and Natural Science Foundation of Guangdong Province (Grant No. 32870)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Q., Tang, J., Yu, Z. et al. Latency represents sound frequency in mouse IC. SCI CHINA SER C 50, 258–264 (2007). https://doi.org/10.1007/s11427-007-0020-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-007-0020-6

Keywords

Navigation