Skip to main content
Log in

Boosting the sodium storage performance of Prussian blue analogues via effective etching

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Prussian blue analogues (PBAs) have gained significant popularity as cathode materials for sodium-ion batteries (SIBs) due to their remarkable features such as high capacity and convenient synthesis. However, PBAs usually suffer from kinetic problems during the electrochemical reactions due to sluggish Na+ diffusion in the large crystals, resulting in low-capacity utilization and inferior rate capability. In this study, we present a facile etching method aiming at activating the sodium storage sites and accelerating the Na+ transport of Na2NiFe(CN)6 (denoted as NaNiHCF) by precisely controlling its morphologies. A progressive corner passivation phenomenon occurred in NaNiHCF during the etching process, which led to a substantial augmentation of the specific surface area as the morphology transitioned from a standard cube to a dice shape. Notably, by controlling the etching time, the obtained NaNiHCF-3 electrode exhibited boosted electrochemical performance with high reversible capacity of 83.5 mAh g−1 (98.2% of its theoretical capacity), superior rate capability (71.2 mAh g−1 at 10 C), and stable cycling life-span at different temperatures. Both experimental and computational methods reveal the remarkably reversible structural evolution process and improved Na+ diffusion coefficient. We believe that this work can serve as an indispensable reference to tailor the structure of PBAs to obtain improved electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Prabakar SJR, Hwang YH, Bae EG, Shim S, Kim D, Lah MS, Sohn KS, Pyo M. Adv Mater, 2013, 25: 3307–3312

    Article  CAS  PubMed  Google Scholar 

  2. Kraytsberg A, Ein-Eli Y. Adv Energy Mater, 2012, 2: 922–939

    Article  CAS  Google Scholar 

  3. Chen X, Liu C, Fang Y, Ai X, Zhong F, Yang H, Cao Y. Carbon Energy, 2022, 4: 1133–1150

    Article  CAS  Google Scholar 

  4. Hwang YH, Bae EG, Sohn KS, Shim S, Song X, Lah MS, Pyo M. J Power Sources, 2013, 240: 683–690

    Article  CAS  Google Scholar 

  5. Chen X, Sawut N, Chen K, Li H, Zhang J, Wang Z, Yang M, Tang G, Ai X, Yang H, Fang Y, Cao Y. Energy Environ Sci, 2023, 16: 4041–4053

    Article  CAS  Google Scholar 

  6. Xie F, Xu Z, Guo Z, Lu Y, Chen L, Titirici MM, Hu YS. Sci China Chem, 2021, 64: 1679–1692

    Article  CAS  Google Scholar 

  7. Wang C, Sun L, Li M, Zhou L, Cheng Y, Ao X, Zhang X, Wang L, Tian B, Fan HJ. Sci China Chem, 2022, 65: 399–407

    Article  CAS  Google Scholar 

  8. Li C, Hou J, Zhang J, Li X, Jiang S, Zhang G, Yao Z, Liu T, Shen S, Liu Z, Xia X, Xiong J, Yang Y. Sci China Chem, 2022, 65: 1420–1432

    Article  CAS  Google Scholar 

  9. Itaya K, Uchida I, Neff VD. Acc Chem Res, 2002, 19: 162–168

    Article  Google Scholar 

  10. Karyakin A. Electrochem Commun, 1999, 1: 78–82

    Article  CAS  Google Scholar 

  11. Fang Y, Yu XY, Lou XWD. Matter, 2019, 1: 90–114

    Article  Google Scholar 

  12. Peng J, Ou M, Yi H, Sun X, Zhang Y, Zhang B, Ding Y, Wang F, Gu S, López CA, Zhang W, Liu Y, Fang J, Wei P, Li Y, Miao L, Jiang J, Fang C, Li Q, Fernández-Díaz MT, Alonso JA, Chou S, Han J. Energy Environ Sci, 2021, 14: 3130–3140

    Article  CAS  Google Scholar 

  13. Fang Y, Xiao L, Chen Z, Ai X, Cao Y, Yang H. Electrochem Energ Rev, 2018, 1: 294–323

    Article  CAS  Google Scholar 

  14. Peng J, Zhang W, Hu Z, Zhao L, Wu C, Peleckis G, Gu Q, Wang JZ, Liu HK, Dou SX, Chou S. Nano Lett, 2022, 22: 1302–1310

    Article  CAS  PubMed  Google Scholar 

  15. Peng J, Gao Y, Zhang H, Liu Z, Zhang W, Li L, Qiao Y, Yang W, Wang J, Dou S, Chou S. Angew Chem Int Ed, 2022, 61: e202205867

    Article  CAS  Google Scholar 

  16. Xiao L, Ji F, Zhang J, Chen X, Fang Y. Small, 2023, 19: 2205732

    Article  CAS  Google Scholar 

  17. Zhao A, Liu C, Ji F, Zhang S, Fan H, Ni W, Fang Y, Ai X, Yang H, Cao Y. ACS Energy Lett, 2023, 8: 753–761

    Article  CAS  Google Scholar 

  18. Liu C, Chen K, Xiong H, Zhao A, Zhang H, Li Q, Ai X, Yang H, Fang Y, Cao Y. eScience, 2023, 3: 100186

    Article  Google Scholar 

  19. Zhang J, Liu Y, Zhao X, He L, Liu H, Song Y, Sun S, Li Q, Xing X, Chen J. Adv Mater, 2020, 32: 1906348

    Article  CAS  Google Scholar 

  20. Fang Y, Yu XY, Lou XWD. Angew Chem Int Ed, 2017, 56: 5801–5805

    Article  CAS  Google Scholar 

  21. Ding Q, Zheng W, Zhao A, Zhao Y, Chen K, Zhou X, Zhang H, Li Q, Ai X, Yang H, Fang Y, Cao Y. Adv Energy Mater, 2023, 13: 2203802

    Article  CAS  Google Scholar 

  22. Lai Y, Xie H, Li P, Li B, Zhao A, Luo L, Jiang Z, Fang Y, Chen S, Ai X, Xia D, Cao Y. Adv Mater, 2022, 34: 2206039

    Article  CAS  Google Scholar 

  23. Jin J, Liu Y, Zhao X, Liu H, Deng S, Shen Q, Hou Y, Qi H, Xing X, Jiao L, Chen J. Angew Chem Int Ed, 2023, 62: e202219230

    Article  CAS  Google Scholar 

  24. Shen Q, Liu Y, Zhao X, Jin J, Wang Y, Li S, Li P, Qu X, Jiao L. Adv Funct Mater, 2021, 31: 2106923

    Article  CAS  Google Scholar 

  25. Jin J, Liu Y, Pang X, Wang Y, Xing X, Chen J. Sci China Chem, 2021, 64: 385–402

    Article  CAS  Google Scholar 

  26. Yao HR, Zheng L, Xin S, Guo YG. Sci China Chem, 2022, 65: 1076–1087

    Article  CAS  Google Scholar 

  27. Yu L, Dong H, Chang YX, Cheng Z, Xu K, Feng YH, Si D, Zhu X, Liu M, Xiao B, Wang PF, Xu S. Sci China Chem, 2022, 65: 2005–2014

    Article  CAS  Google Scholar 

  28. Zhang H, Gao Y, Chen M, Li L, Li L, Qiao Y, Li W, Wang J, Chou S-. Small Methods, 2022, 6: 2200455

    Article  CAS  Google Scholar 

  29. Zhang H, Gao Y, Liu XH, Yang Z, He XX, Li L, Qiao Y, Chen WH, Zeng RH, Wang Y, Chou SL. Adv Funct Mater, 2022, 32: 2107718

    Article  CAS  Google Scholar 

  30. Peng J, Zhang W, Liu Q, Wang J, Chou S, Liu H, Dou S. Adv Mater, 2022, 34: 2108384

    Article  CAS  Google Scholar 

  31. Zhou A, Cheng W, Wang W, Zhao Q, Xie J, Zhang W, Gao H, Xue L, Li J. Adv Energy Mater, 2021, 11: 2000943

    Article  CAS  Google Scholar 

  32. Lu Y, Wang L, Cheng J, Goodenough JB. Chem Commun, 2012, 48: 6544–6546

    Article  CAS  Google Scholar 

  33. Fang YJ, Chen ZX, Ai XP, Yang HX, Cao YL. Acta Physico-Chim Sin, 2017, 33: 211–241

    Article  CAS  Google Scholar 

  34. Wu X, Wu C, Wei C, Hu L, Qian J, Cao Y, Ai X, Wang J, Yang H. ACS Appl Mater Interfaces, 2016, 8: 5393–5399

    Article  CAS  PubMed  Google Scholar 

  35. Prabakar SJR, Jeong J, Pyo M. RSC Adv, 2015, 5: 37545–37552

    Article  CAS  Google Scholar 

  36. Yue Y, Binder AJ, Guo B, Zhang Z, Qiao ZA, Tian C, Dai S. Angew Chem Int Ed, 2014, 53: 3134–3137

    Article  CAS  Google Scholar 

  37. Hu M, Furukawa S, Ohtani R, Sukegawa H, Nemoto Y, Reboul J, Kitagawa S, Yamauchi Y. Angew Chem Int Ed, 2012, 51: 984–988

    Article  CAS  Google Scholar 

  38. Kim DS, Zakaria MB, Park MS, Alowasheeir A, Alshehri SM, Yamauchi Y, Kim H. Electrochim Acta, 2017, 240: 300–306

    Article  CAS  Google Scholar 

  39. Meng Q, Zhang W, Hu M, Jiang JS. Chem Commun, 2015, 52: 1957–1960

    Article  Google Scholar 

  40. Bleuzen A, Cafun JD, Bachschmidt A, Verdaguer M, Münsch P, Baudelet F, Itié JP. J Phys Chem C, 2008, 112: 17709–17715

    Article  CAS  Google Scholar 

  41. Wang L, Song J, Qiao R, Wray LA, Hossain MA, Chuang YD, Yang W, Lu Y, Evans D, Lee JJ, Vail S, Zhao X, Nishijima M, Kakimoto S, Goodenough JB. J Am Chem Soc, 2015, 137: 2548–2554

    Article  CAS  PubMed  Google Scholar 

  42. You Y, Wu XL, Yin YX, Guo YG. J Mater Chem A, 2013, 1: 14061–14065

    Article  CAS  Google Scholar 

  43. Haight SM, Schwartz DT, Lilga MA. J Electrochem Soc, 1999, 146: 1866–1872

    Article  CAS  Google Scholar 

  44. Kulesza PJ, Malik MA, Denca A, Strojek J. Anal Chem, 1996, 68: 2442–2446

    Article  CAS  Google Scholar 

  45. Hasegawa G, Kanamori K, Kiyomura T, Kurata H, Nakanishi K, Abe T. Adv Energy Mater, 2015, 5: 1400730

    Article  Google Scholar 

  46. Wolfenstine J, Allen J. J Power Sources, 2005, 142: 389–390

    Article  CAS  Google Scholar 

  47. Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D, Goodenough JB. Angew Chem Int Ed, 2013, 52: 1964–1967

    Article  CAS  Google Scholar 

Download references

Acknowledgements This work is financially supported from the National Natural Science Foundation of China (U20A20249, 21972108, and 22209125). The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongjin Fang or Yuliang Cao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Peng, J., Chen, K. et al. Boosting the sodium storage performance of Prussian blue analogues via effective etching. Sci. China Chem. 66, 3154–3160 (2023). https://doi.org/10.1007/s11426-023-1824-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1824-3

Navigation