Skip to main content
Log in

Synthesis of medium-sized benzo[b]azocines and benzo[b]azonines by photoinduced 8-/9-endo sulfonyl-cyclization

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An efficient photochemical radical sulfonyl cyclization of designed dienes to medium-sized benzo[b]azocines and benzo[b] azonines was developed. This chemoselective method provides new highly functionalized eight- and nine-membered N-het-erocycles. Radical inhibition experiments, light on/off experiments, and apparent quantum efficiency calculations were used to clarify the radical mechanism. Density functional theory calculations enabled rationalization of the rate-determining step and observed chemoselectivity. Large-scale synthesis and derivatizations via epoxidation and convenient N-Ts deprotection showed the potential utility of this strategy. This photochemical method for synthesizing sulfonylbenzo[b]azocines and sulfonylbenzo[b] azonines with insertion of sulfur dioxide provides new sustainable routes for the synthesis of valuable medium-sized N-heterocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hu X, Wang W, Wang D, Zheng Y. J Mater Chem C, 2018, 6: 11232–11242

    Article  CAS  Google Scholar 

  2. Huang Y, Egap E. Polym J, 2018, 50: 603–614

    Article  CAS  Google Scholar 

  3. Cui Z, Abdurahman A, Ai X, Li F. CCS Chem, 2020, 2: 1129–1145

    Article  CAS  Google Scholar 

  4. Stuyver T, Chen B, Zeng T, Geerlings P, De Proft F, Hoffmann R. Chem Rev, 2019, 119: 11291–11351

    Article  CAS  PubMed  Google Scholar 

  5. Gomberg M. J Am Chem Soc, 1900, 22: 757–771

    Article  Google Scholar 

  6. Feng Z, Tang S, Su Y, Wang X. Chem Soc Rev, 2022, 51: 5930–5973

    Article  CAS  PubMed  Google Scholar 

  7. Wu XF, Neumann H, Beller M. Chem Rev, 2013, 113: 813–853

    Article  Google Scholar 

  8. Zhang B, Studer A. Chem Soc Rev, 2015, 44: 3505–3521

    Article  CAS  PubMed  Google Scholar 

  9. Chen ZM, Zhang XM, Tu YQ. Chem Soc Rev, 2015, 44: 5220–5245

    Article  CAS  PubMed  Google Scholar 

  10. Wu X, Ma Z, Feng T, Zhu C. Chem Soc Rev, 2021, 50: 11577–11613

    Article  CAS  PubMed  Google Scholar 

  11. Coppola GA, Pillitteri S, Van der Eycken EV, You SL, Sharma UK. Chem Soc Rev, 2022, 51: 2313–2382

    Article  CAS  PubMed  Google Scholar 

  12. Staveness D, Bosque I, Stephenson CRJ. Acc Chem Res, 2016, 49: 2295–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Woźniak Ł, Magagnano G, Melchiorre P. Angew Chem Int Ed, 2018, 57: 1068–1072

    Article  Google Scholar 

  14. Staveness D, Collins Iii JL, McAtee RC, Stephenson CRJ. Angew Chem Intl Edit, 2019, 58: 19000–19006

    Article  CAS  Google Scholar 

  15. Latrache M, Hoffmann N. Chem Soc Rev, 2021, 50: 7418–7435

    Article  CAS  PubMed  Google Scholar 

  16. Wang CC, Zhang GX, Zuo ZW, Zeng R, Zhai DD, Liu F, Shi ZJ. Sci China Chem, 2021, 64: 1487–1492

    Article  CAS  Google Scholar 

  17. Ruan XY, Zhang T, Li WA, Yin YZ, Han ZY, Gong LZ. Sci China Chem, 2022, 65: 863–869

    Article  CAS  Google Scholar 

  18. Srivastava V, Singh PK, Singh PP. J Photochem Photobiol C, 2022, 50: 100488

    Article  CAS  Google Scholar 

  19. Srivastava V, Singh PK, Srivastava A, Singh PP. RSC Adv, 2020, 10: 20046–20056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Srivastava V, Singh PP. RSC Adv, 2017, 7: 31377–31392

    Article  CAS  Google Scholar 

  21. Coppola GA, Pillitteri S, Van der Eycken EV, You SL, Sharma UK. Chem Soc Rev, 2022, 51: 2313–2382

    Article  CAS  PubMed  Google Scholar 

  22. For selected works, see: Soldevilla A, Sampedro D, Campos PJ, Rodríguez MA. J Org Chem, 2005, 70: 6976–6979

    Article  CAS  PubMed  Google Scholar 

  23. Zeng TT, Xuan J, Ding W, Wang K, Lu LQ, Xiao WJ. Org Lett, 2015, 17: 4070–4073

    Article  CAS  PubMed  Google Scholar 

  24. Lefebvre C, Michelin C, Martzel T, Djou’ou Mvondo V, Bulach V, Abe M, Hoffmann N. J Org Chem, 2018, 83: 1867–1875

    Article  CAS  PubMed  Google Scholar 

  25. Tu JL, Yang JW, Xu W, Su M, Liu F. Org Chem Front, 2021, 8: 6405–6410

    Article  CAS  Google Scholar 

  26. Makarov AS, Fadeev AA, Uchuskin MG. Org Chem Front, 2021, 8: 6553–6560

    Article  CAS  Google Scholar 

  27. Wang ZJ, Zheng Y, Tang K, Guan JP, Ye ZP, He JT, Xiao JA, Chen K, Xiang HY, Yang H. J Org Chem, 2022, 87: 4732–4741

    Article  CAS  PubMed  Google Scholar 

  28. Yang M, Lian R, Zhang X, Wang C, Cheng J, Wang X. Nat Commun, 2022, 13: 4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Blackmun DE, Chamness SA, Schindler CS. Org Lett, 2022, 24: 3053–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miao CB, Qiang XQ, Xu X, Song XQ, Zhou SQ, Lyu X, Yang HT. Org Lett, 2022, 24: 3828–3833

    Article  CAS  PubMed  Google Scholar 

  31. For selected works, see: Mukhina OA, Bhuvan Kumar NN, Arisco TM, Valiulin RA, Metzel GA, Kutateladze AG. Angew Chem Int Ed, 2011, 50: 9423–9428

    Article  CAS  Google Scholar 

  32. Mukhina OA, Kuznetsov DM, Cowger TM, Kutateladze AG. Angew Chem Int Ed, 2015, 54: 11516–11520

    Article  CAS  Google Scholar 

  33. Hsieh SY, Bode JW. Org Lett, 2016, 18: 2098–2101

    Article  CAS  PubMed  Google Scholar 

  34. Jackl MK, Legnani L, Morandi B, Bode JW. Org Lett, 2017, 19: 4696–4699

    Article  CAS  PubMed  Google Scholar 

  35. Leitch JA, Fuentes de Arriba AL, Tan J, Hoff O, Martínez CM, Dixon DJ. Chem Sci, 2018, 9: 6653–6658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bissonnette NB, Ellis JM, Hamann LG, Romanov-Michailidis F. Chem Sci, 2019, 10: 9591–9596

    Article  CAS  PubMed  Google Scholar 

  37. Hua HL, Zhang BS, He YT, Qiu YF, Wu XX, Xu PF, Liang YM. Org Lett, 2016, 18: 216–219

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Hu M, Li JH. ACS Catal, 2017, 7: 6757–6761

    Article  CAS  Google Scholar 

  39. Wang H, Wang B, Sun S, Cheng J. Org Chem Front, 2018, 5: 2547–2551

    Article  CAS  Google Scholar 

  40. Zhou N, Kuang K, Wu M, Wu S, Xia Z, Xu Q, Zhang M. Org Chem Front, 2021, 8: 4095–4100

    Article  CAS  Google Scholar 

  41. Zhou N, Kuang K, Wu M, Wu S, Xu Q, Xia Z, Zhang M. Adv Synth Catal, 2021, 363: 3491–3495

    Article  CAS  Google Scholar 

  42. Zhang Y, Cai Z, Struwe J, Ma C, Zeng W, Liao X, Xu M, Ackermann L. Chem Sci, 2021, 12: 15727–15732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhong LJ, Xiong ZQ, Ouyang XH, Li Y, Song RJ, Sun Q, Lu X, Li JH. J Am Chem Soc, 2022, 144: 339–348

    Article  CAS  PubMed  Google Scholar 

  44. Zhou N, Xia Z, Kuang K, Xu Q, Zhao F, Wang L, Zhang M. Org Lett, 2022, 24: 5791–5796

    Article  CAS  PubMed  Google Scholar 

  45. Van Den Broek SAMW, Meeuwissen SA, Van Delft FL Rutjes FPJT. Natural Products Containing Medium-Sized Nitrogen Hetero-cycles Synthesized by Ring-Closing Alkene Metathesis. In: Cossy J, Arseniyadis S, Meyer C, Eds. Metathesis in Natural Product Synthesis. Weinheim: Wiley-VCH, 2010. 45

    Chapter  Google Scholar 

  46. Hussain A, Yousuf SK, Mukherjee D. RSC Adv, 2014, 4: 43241–43257

    Article  CAS  Google Scholar 

  47. Donald JR, Unsworth WP. Chem Eur J, 2017, 23: 8780–8799

    Article  CAS  PubMed  Google Scholar 

  48. Reyes RL, Iwai T, Sawamura M. Chem Rev, 2021, 121: 8926–8947

    Article  CAS  PubMed  Google Scholar 

  49. Evans PA, Holmes B. Tetrahedron, 1991, 47: 9131–9166

    Article  CAS  Google Scholar 

  50. Fukuyama T, Xu L, Goto S. J Am Chem Soc, 1992, 114: 383–385

    Article  CAS  Google Scholar 

  51. Bennasar ML, Zulaica E, Solé D, Alonso S. Chem Commun, 2009, 23: 3372–3374

    Article  Google Scholar 

  52. Toma T, Kita Y, Fukuyama T. J Am Chem Soc, 2010, 132: 10233–10235

    Article  CAS  PubMed  Google Scholar 

  53. Feng T, Cai XH, Li Y, Wang YY, Liu YP, Xie MJ, Luo XD. Org Lett, 2009, 11: 4834–4837

    Article  CAS  PubMed  Google Scholar 

  54. Beniddir MA, Martin MT, Tran Huu Dau ME, Grellier P, Rasoanaivo P, Guéritte F, Litaudon M. Org Lett, 2012, 14: 4162–4165

    Article  CAS  PubMed  Google Scholar 

  55. Pan G, Williams RM. J Org Chem, 2012, 77: 4801–4811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lancefield CS, Zhou L, Lébl T, Slawin AMZ, Westwood NJ. Org Lett, 2012, 14: 6166–6169

    Article  CAS  PubMed  Google Scholar 

  57. Nge CE, Gan CY, Low YY, Thomas NF, Kam TS. Org Lett, 2013, 15: 4774–4777

    Article  CAS  PubMed  Google Scholar 

  58. Illuminati G, Mandolini L. Acc Chem Res, 1981, 14: 95–102

    Article  CAS  Google Scholar 

  59. Ohno H, Hamaguchi H, Ohata M, Tanaka T. Angew Chem Int Ed, 2003, 42: 1749–1753

    Article  CAS  Google Scholar 

  60. Shiina I. Chem Rev, 2007, 107: 239–273

    Article  CAS  PubMed  Google Scholar 

  61. Voskressensky LG, Kulikova LN, Borisova TN, Varlamov AV. Adv Heterocycl Chem, 2008, 96: 81–122

    Article  CAS  Google Scholar 

  62. Listratova A, Voskressensky L. Synthesis, 2017, 49: 3801–3834

    Article  CAS  PubMed Central  Google Scholar 

  63. For selected cycloaddition-fragmentation strategy, see: Shaw MH, Croft RA, Whittingham WG, Bower JF. J Am Chem Soc, 2015, 137: 8054–8057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Fumagalli G, Stanton S, Bower JF. Chem Rev, 2017, 117: 9404–9432

    Article  CAS  PubMed  Google Scholar 

  65. Boyd O, Wang G, Sokolova OO, Calow ADJ, Bertrand SM, Bower JF. Angew Chem Intl Edit, 2019, 58: 18844–18848

    Article  CAS  Google Scholar 

  66. Sokolova OO, Bower JF. Chem Rev, 2021, 121: 80–109

    Article  CAS  PubMed  Google Scholar 

  67. For selected [4+2+2] cyclization works, see: Yu RT, Friedman RK, Rovis T. J Am Chem Soc, 2009, 131: 13250–13251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miege F, Meyer C, Cossy J. Angew Chem Int Ed, 2011, 50: 5932–5937

    Article  CAS  Google Scholar 

  69. Wu S, Zeng R, Fu C, Yu Y, Zhang X, Ma S. Chem Sci, 2015, 6: 2275–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. For selected [4+4] cyclization works, see: Kumar P, Zhang K, Louie J. Angew Chem Int Ed, 2012, 51: 8602–8606

    Article  CAS  Google Scholar 

  71. Thakur A, Facer ME, Louie J. Angew Chem Int Ed, 2013, 52: 12161–12165

    Article  CAS  Google Scholar 

  72. For selected [6+2] cyclization works, see: Minehan TG. Acc Chem Res, 2016, 49: 1168–1181

    Article  CAS  PubMed  Google Scholar 

  73. Miller SJ, Kim SH, Chen ZR, Grubbs RH. J Am Chem Soc, 1995, 117: 2108–2109

    Article  CAS  Google Scholar 

  74. Visser MS, Heron NM, Didiuk MT, Sagal JF, Hoveyda AH. J Am Chem Soc, 1996, 118: 4291–4298

    Article  CAS  Google Scholar 

  75. Paquette LA, Leit SM. J Am Chem Soc, 1999, 121: 8126–8127

    Article  CAS  Google Scholar 

  76. Scott KA, Njardarson JT. Top Curr Chem (Z), 2018, 376: 5

    Article  Google Scholar 

  77. Harrak Y, Casula G, Basset J, Rosell G, Plescia S, Raffa D, Cusimano MG, Pouplana R, Pujol MD. J Med Chem, 2010, 53: 6560–6571

    Article  CAS  PubMed  Google Scholar 

  78. Noutoshi Y, Ikeda M, Saito T, Osada H, Shirasu K. Front Plant Sci, 2012, 3: 245

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen Y, Lu LQ, Yu DG, Zhu CJ, Xiao WJ. Sci China Chem, 2019, 62: 24–57

    Article  CAS  Google Scholar 

  80. Lu J, Li L, He X, Xu G, Xuan J. Chin J Chem, 2021, 39: 1646–1650

    Article  CAS  Google Scholar 

  81. Qu C, Song G, Ou J, Tang D, Xu Z, Chen Z. Chin J Chem, 2021, 39: 2220–2226

    Article  CAS  Google Scholar 

  82. Qiu G, Zhou K, Gao L, Wu J. Org Chem Front, 2018, 5: 691–705

    Article  CAS  Google Scholar 

  83. Hofman K, Liu N, Manolikakes G. Chem Eur J, 2018, 24: 11852–11863

    Article  CAS  PubMed  Google Scholar 

  84. Qiu G, Lai L, Cheng J, Wu J. Chem Commun, 2018, 54: 10405–10414

    Article  CAS  Google Scholar 

  85. Ye S, Qiu G, Wu J. Chem Commun, 2019, 55: 1013–1019

    Article  CAS  Google Scholar 

  86. Qiu G, Zhou K, Wu J. Chem Commun, 2018, 54: 12561–12569

    Article  CAS  Google Scholar 

  87. Ye S, Yang M, Wu J. Chem Commun, 2020, 56: 4145–4155

    Article  CAS  Google Scholar 

  88. Sun K, Li Y, Xiong T, Zhang J, Zhang Q. J Am Chem Soc, 2011, 133: 1694–1697

    Article  CAS  PubMed  Google Scholar 

  89. Sun K, Wang X, Liu L, Sun J, Liu X, Li Z, Zhang Z, Zhang G. ACS Catal, 2015, 5: 7194–7198

    Article  CAS  Google Scholar 

  90. Zhang Z, Wang S, Tan P, Gu X, Sun W, Liu C, Chen J, Li J, Sun K. Org Lett, 2022, 24: 2288–2293

    Article  CAS  PubMed  Google Scholar 

  91. Yu M, Zhou Z, Chen Y, Wang Z, Wang W, Sun K. Org Lett, 2022, 24: 4886–4891

    Article  CAS  PubMed  Google Scholar 

  92. Sun K, Zhang Y, Tian M, Wang Z, Zhao D, Wang S, Tang S, Zhang Z. Chem Commun, 2022, 58: 9658–9661

    Article  CAS  Google Scholar 

  93. For selected examples of photoredox catalysis by eosin-Y and radical chemistry, see: Cismesia MA, Yoon TP. Chem Sci, 2015, 6: 5426–5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Studer A, Curran DP. Angew Chem Int Ed, 2016, 55: 58–102

    Article  CAS  Google Scholar 

  95. Xu P, Wang G, Zhu Y, Li W, Cheng Y, Li S, Zhu C. Angew Chem Int Ed, 2016, 55: 2939–2943

    Article  CAS  Google Scholar 

  96. Sahoo MK, Midya SP, Landge VG, Balaraman E. Green Chem, 2017, 19: 2111–2117

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21801007) and Qingchuang Technology Support Program of University in Shandong Province (2021KJ066). S.-F. Ni acknowledges funding from the STU Scientific Research Foundation for Talents (NTF20022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Sun, Shaofei Ni or Qian Zhang.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, K., Zhao, D., Li, Q. et al. Synthesis of medium-sized benzo[b]azocines and benzo[b]azonines by photoinduced 8-/9-endo sulfonyl-cyclization. Sci. China Chem. 66, 2309–2316 (2023). https://doi.org/10.1007/s11426-023-1622-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1622-1

Navigation