Skip to main content
Log in

Bright-white hydrogels for on-demand passive cooling

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Passive cooling permits thermal management of near-zero energy consumption and low CO2 emissions. Despite significant progress of passive radiative coolers, comfortable and steady temperatures can hardly be achieved due to their inadequate daytime cooling power (below 0.2 kW m2) yet over-cooling at night. Here, we provide a bright-white hydrogel that enables on-demand passive cooling by virtue of adaptive water evaporation and high solar reflectance up to 86.1%. Notably, theoretical cooling power determined by the evaporating rate can reach 1.25 kW m −2 in daytime but decreases dramatically at night. Hence sub-ambient temperature reduction of 11–13 °C at noon yet nearly none at night are realized, with the diurnal temperature difference narrowed significantly. Moreover, effective cooling using colored hydrogels, and transition from evaporative cooling to solar heating have been demonstrated. This novel evaporative cooling approach will pave the way for smart passive coolers of high efficiency, colorful appearance, and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manoli G, Fatichi S, Schläpfer M, Yu K, Crowther TW, Meili N, Burlando P, Katul GG, Bou-Zeid E. Nature, 2019, 573: 55–60

    Article  CAS  PubMed  Google Scholar 

  2. Yin X, Yang R, Tan G, Fan S. Science, 2020, 370: 786–791

    Article  CAS  PubMed  Google Scholar 

  3. Song Y, Darani KS, Khdair AI, Abu-Rumman G, Kalbasi R. Energy Rep, 2021, 7: 2784–2820

    Article  Google Scholar 

  4. Saber EM, Chaer I, Gillich A, Ekpeti BG. Energies, 2021, 14: 4388

    Article  Google Scholar 

  5. Bhamare DK, Rathod MK, Banerjee J. Energy Buildings, 2019, 198: 467–490

    Article  Google Scholar 

  6. Zhang G, Jiang S, Yao W, Liu C. ACS Appl Mater Interfaces, 2016, 8: 31202–31211

    Article  CAS  PubMed  Google Scholar 

  7. Peng Y, Li W, Liu B, Jin W, Schaadt J, Tang J, Zhou G, Wang G, Zhou J, Zhang C, Zhu Y, Huang W, Wu T, Goodson KE, Dames C, Prasher R, Fan S, Cui Y. Nat Commun, 2021, 12: 6122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li P, Wang A, Fan J, Kang Q, Jiang P, Bao H, Huang X. Adv Funct Mater, 2021, 32: 2109542

    Article  Google Scholar 

  9. Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S. Nature, 2014, 515: 540–544

    Article  CAS  PubMed  Google Scholar 

  10. Zhu B, Li W, Zhang Q, Li D, Liu X, Wang Y, Xu N, Wu Z, Li J, Li X, Catrysse PB, Xu W, Fan S, Zhu J. Nat Nanotechnol, 2021, 16: 1342–1348

    Article  CAS  PubMed  Google Scholar 

  11. Yang QH. Sci China Chem, 2021, 64: 339–340

    Article  CAS  Google Scholar 

  12. Mandal J, Fu Y, Overvig AC, Jia M, Sun K, Shi NN, Zhou H, Xiao X, Yu N, Yang Y. Science, 2018, 362: 315–319

    Article  CAS  PubMed  Google Scholar 

  13. Feng C, Yang P, Liu H, Mao M, Liu Y, Xue T, Fu J, Cheng T, Hu X, Fan HJ, Liu K. Nano Energy, 2021, 85: 105971

    Article  CAS  Google Scholar 

  14. Emdadi Z, Asim N, Ambar Yarmo M, Shamsudin R, Mohammad M, Sopian K. Energies, 2016, 9: 586

    Article  Google Scholar 

  15. Lu Z, Strobach E, Chen N, Ferralis N, Grossman JC. Joule, 2020, 4: 2693–2701

    Article  CAS  Google Scholar 

  16. Faraj K, Khaled M, Faraj J, Hachem F, Castelain C. Renew Sustain Energy Rev, 2019, 119: 109579

    Article  Google Scholar 

  17. Alberghini M, Morciano M, Fasano M, Bertiglia F, Fernicola V, Asinari P, Chiavazzo E. Sci Adv, 2020, 6: eaax5015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Santamouris M, Ding L, Fiorito F, Oldfield P, Osmond P, Paolini R, Prasad D, Synnefa A. Sol Energy, 2017, 154: 14–33

    Article  Google Scholar 

  19. Mandal J, Yang Y, Yu N, Raman AP. Joule, 2020, 4: 1350–1356

    Article  Google Scholar 

  20. Zhou L, Song H, Liang J, Singer M, Zhou M, Stegenburgs E, Zhang N, Xu C, Ng T, Yu Z, Ooi B, Gan Q. Nat Sustain, 2019, 2: 718–724

    Article  Google Scholar 

  21. Chen Z, Zhu L, Raman A, Fan S. Nat Commun, 2016, 7: 13729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leroy A, Bhatia B, Kelsall CC, Castillejo-Cuberos A, Di Capua H. M, Zhao L, Zhang L, Guzman AM, Wang EN. Sci Adv, 2019, 5: eaat9480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang M, Zou W, Guo J, Qian Z, Luo H, Yang S, Zhao N, Pattelli L, Xu J, Wiersma DS. ACS Appl Mater Interfaces, 2020, 12: 25286–25293

    Article  CAS  PubMed  Google Scholar 

  24. Li T, Zhai Y, He S, Gan W, Wei Z, Heidarinejad M, Dalgo D, Mi R, Zhao X, Song J, Dai J, Chen C, Aili A, Vellore A, Martini A, Yang R, Srebric J, Yin X, Hu L. Science, 2019, 364: 760–763

    Article  CAS  PubMed  Google Scholar 

  25. Huang W, Chen Y, Luo Y, Mandal J, Li W, Chen M, Tsai C-, Shan Z, Yu N, Yang Y. Adv Funct Mater, 2021, 31: 2010334

    Article  CAS  Google Scholar 

  26. Wang T, Wu Y, Shi L, Hu X, Chen M, Wu L. Nat Commun, 2021, 12: 365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin C, Li Y, Chi C, Kwon YS, Huang J, Wu Z, Zheng J, Liu G, Tso CY, Chao CYH, Huang B. Adv Mater, 2022, 34: 2109350

    Article  CAS  Google Scholar 

  28. Xue X, Qiu M, Li Y, Zhang QM, Li S, Yang Z, Feng C, Zhang W, Dai JG, Lei D, Jin W, Xu L, Zhang T, Qin J, Wang H, Fan S. Adv Mater, 2020, 32: 1906751

    Article  CAS  Google Scholar 

  29. Ulpiani G, Ranzi G, Shah KW, Feng J, Santamouris M. Sol Energy, 2020, 209: 278–301

    Article  CAS  Google Scholar 

  30. Liu J, Ding Y, Shen Z, Zhang H, Han T, Guan Y, Tian Y, Braun PV. Adv Sci, 2022, 9: 2103517

    Article  CAS  Google Scholar 

  31. Wu Y, Wen B, Li S, Gasparrini A, Tong S, Overcenco A, Urban A, Schneider A, Entezari A, Vicedo-Cabrera AM, Zanobetti A, Analitis A, Zeka A, Tobias A, Alahmad B, Armstrong B, Forsberg B, Íñiguez C, Ameling C, De la Cruz Valencia C, Åström C, Houthuijs D, Van Dung D, Royé D, Indermitte E, Lavigne E, Mayvaneh F, Acquaotta F, de’Donato F, Sera F, Carrasco-Escobar G, Kan H, Orru H, Kim H, Holobaca IH, Kyselý J, Madureira J, Schwartz J, Katsouyanni K, Hurtado-Diaz M, Ragettli MS, Hashizume M, Pascal M, de Sousa Zanotti Stagliorio Coélho M, Scovronick N, Michelozzi P, Goodman P, Nascimento Saldiva PH, Abrutzky R, Osorio S, Dang TN, Colistro V, Huber V, Lee W, Seposo X, Honda Y, Bell ML, Guo Y. Innovation, 2022, 3: 100225

    PubMed  PubMed Central  Google Scholar 

  32. Pu S, Fu J, Liao Y, Ge L, Zhou Y, Zhang S, Zhao S, Liu X, Hu X, Liu K, Chen J. Adv Mater, 2020, 32: 1907307

    Article  CAS  Google Scholar 

  33. Zhang P, Liu F, Liao Q, Yao H, Geng H, Cheng H, Li C, Qu L. Angew Chem Int Ed, 2018, 57: 16343–16347

    Article  CAS  Google Scholar 

  34. Tao P, Shang W, Song C, Shen Q, Zhang F, Luo Z, Yi N, Zhang D, Deng T. Adv Mater, 2015, 27: 428–463

    Article  CAS  PubMed  Google Scholar 

  35. Schroeder TBH, Houghtaling J, Wilts BD, Mayer M. Adv Mater, 2018, 30: 1705322

    Article  Google Scholar 

  36. Rotzetter ACC, Schumacher CM, Bubenhofer SB, Grass RN, Gerber LC, Zeltner M, Stark WJ. Adv Mater, 2012, 24: 5352–5356

    Article  CAS  PubMed  Google Scholar 

  37. Ferber S, Behrens AM, McHugh KJ, Rosenberg EM, Linehan AR, Sugarman JL, Jayawardena HSN, Langer R, Jaklenec A. Adv Healthcare Mater, 2018, 7: 1800220

    Article  Google Scholar 

  38. Takegami Y, Yokoyama Y, Norisugi O, Nagatsuma M, Takata K, Rehman MU, Matsunaga K, Yokoi H, Fujiki S, Makino T, Shimizu T. J Biomed Mater Res B Appl BioMater, 2011, 98B: 110–113

    Article  CAS  Google Scholar 

  39. Eklund A, Zhang H, Zeng H, Priimagi A, Ikkala O. Adv Funct Mater, 2020, 30: 2000754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cui S, Ahn C, Wingert MC, Leung D, Cai S, Chen R. Appl Energy, 2016, 168: 332–339

    Article  CAS  Google Scholar 

  41. Kara S, Okay O, Pekcan O. J Appl Polym Sci, 2002, 86: 3589–3595

    Article  CAS  Google Scholar 

  42. Hirokawa Y, Okamoto T, Kimishima K, Jinnai H, Koizumi S, Aizawa K, Hashimoto T. Macromolecules, 2008, 41: 8210–8219

    Article  CAS  Google Scholar 

  43. Seiffert S. Polym Chem, 2017, 8: 4472–4487

    Article  CAS  Google Scholar 

  44. Jijo VJ, Sharma KP, Mathew R, Kamble S, Rajamohanan PR, Ajith-kumar TG, Badiger MV, Kumaraswamy G. Macromolecules, 2010, 43: 4782–4790

    Article  CAS  Google Scholar 

  45. Alduchov OA, Eskridge RE. J Appl Meteor, 1996, 35: 601–609

    Article  Google Scholar 

  46. Bosnjak N, Silberstein MN. Science, 2021, 374: 150–151

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51733008, 51522308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhao.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Zou, W., Luo, H. et al. Bright-white hydrogels for on-demand passive cooling. Sci. China Chem. 66, 1511–1519 (2023). https://doi.org/10.1007/s11426-023-1548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1548-0

Keywords

Navigation