Skip to main content
Log in

Enhancing photostability and power conversion efficiency of organic solar cells by a “sunscreen” ternary strategy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The field has witnessed the rapid growth in the power conversion efficiency (PCE) of organic solar cells (OSCs) over the past decade, reaching the threshold for practical commercialization. However, a major issue remains that OSC lifetimes are seriously limited by the ultraviolet (UV)-induced photodegradation. Here, inspired by the superior photostability of car paint under sunlight and ambient air, a “sunscreen” molecule, 2-(2-hydroxy-5-tert-octylphenyl)benzotriazole (UV329), is used to construct the PM6:Y6 ternary device. The addition of UV329 mainly enhances the ordered stacking of PM6 and increases the light utilization of blend films with the improved crystallization and appropriate phase separation. Accordingly, the ternary device exhibits stronger light response and obviously higher and more balanced carrier mobilities, contributing to higher short-circuit current density, fill factor and PCE. Similar PCE boost is also verified in PM6:BTP-eC9 and PM6:L8-BO systems. The photodegradation of PM6 dominates the photo-degradation process of PM6:Y6 systems, while the UV329 can effectively suppress such degradation, and thus the ternary device can retain nearly 90% of the initial PCE under continuous illumination for 120 min. Moreover, ternary devices also preserve better thermal stability and shelf-life with the enhanced PCE. This work provides a simple yet effective strategy for simultaneously improving PCE and photostability of OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 224–268

    Article  CAS  Google Scholar 

  2. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Liu Y, Meng L, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 1457–1497

    Article  CAS  Google Scholar 

  3. Bao S, Yang H, Fan H, Zhang J, Wei Z, Cui C, Li Y. Adv Mater, 2021, 33: 2105301

    Article  CAS  Google Scholar 

  4. Zhu L, Zhang M, Xu J, Li C, Yan J, Zhou G, Zhong W, Hao T, Song J, Xue X, Zhou Z, Zeng R, Zhu H, Chen CC, MacKenzie RCI, Zou Y, Nelson J, Zhang Y, Sun Y, Liu F. Nat Mater, 2022, 21: 656–663

    Article  CAS  PubMed  Google Scholar 

  5. Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y. Nat Energy, 2021, 6: 605–613

    Article  CAS  Google Scholar 

  6. Jiang K, Zhang J, Zhong C, Lin FR, Qi F, Li Q, Peng Z, Kaminsky W, Jang SH, Yu J, Deng X, Hu H, Shen D, Gao F, Ade H, Xiao M, Zhang C, Jen AKY. Nat Energy, 2022, 7: 1076–1086

    Article  Google Scholar 

  7. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151

    Article  CAS  PubMed  Google Scholar 

  8. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  9. Cui Y, Yao H, Zhang J, Xian K, Zhang T, Hong L, Wang Y, Xu Y, Ma K, An C, He C, Wei Z, Gao F, Hou J. Adv Mater, 2020, 32: 1908205

    Article  CAS  Google Scholar 

  10. Jiang K, Wei Q, Lai JYL, Peng Z, Kim HK, Yuan J, Ye L, Ade H, Zou Y, Yan H. Joule, 2019, 3: 3020–3033

    Article  CAS  Google Scholar 

  11. Chen Y, Chen H, Guan H, Liu W, Li Z, Liu H, Li Y, Zou Y. Chin Chem Lett, 2021, 32: 229–233

    Article  CAS  Google Scholar 

  12. Zheng B, Huo L, Li Y. NPG Asia Mater, 2020, 12: 3

    Article  CAS  Google Scholar 

  13. Zheng Z, Yao H, Ye L, Xu Y, Zhang S, Hou J. Mater Today, 2020, 35: 115–130

    Article  CAS  Google Scholar 

  14. Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655–4660

    Article  CAS  PubMed  Google Scholar 

  15. Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L. Sci Bull, 2020, 65: 272–275

    Article  CAS  Google Scholar 

  16. Wei Q, Yuan J, Yi Y, Zhang C, Zou Y. Natl Sci Rev, 2021, 8: nwab121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duan C, Ding L. Sci Bull, 2020, 65: 1231–1233

    Article  CAS  Google Scholar 

  18. Liao X, He Q, Zhou G, Xia X, Zhu P, Xing Z, Zhu H, Yao Z, Lu X, Chen Y. Chem Mater, 2020, 33: 430–440

    Article  Google Scholar 

  19. Ma R, Tao Y, Chen Y, Liu T, Luo Z, Guo Y, Xiao Y, Fang J, Zhang G, Li X, Guo X, Yi Y, Zhang M, Lu X, Li Y, Yan H. Sci China Chem, 2021, 64: 581–589

    Article  CAS  Google Scholar 

  20. Li W, Liu D, Wang T. Adv Funct Mater, 2021, 31: 2104552

    Article  CAS  Google Scholar 

  21. Wang Y, Lee J, Hou X, Labanti C, Yan J, Mazzolini E, Parhar A, Nelson J, Kim J, Li Z. Adv Energy Mater, 2020, 11: 2003002

    Article  Google Scholar 

  22. Pont S, Osella S, Smith A, Marsh AV, Li Z, Beljonne D, Cabral JT, Durrant JR. Chem Mater, 2019, 31: 6076–6083

    Article  CAS  Google Scholar 

  23. Heumueller T, Mateker WR, Distler A, Fritze UF, Cheacharoen R, Nguyen WH, Biele M, Salvador M, von Delius M, Egelhaaf HJ, McGehee MD, Brabec CJ. Energy Environ Sci, 2016, 9: 247–256

    Article  CAS  Google Scholar 

  24. Liu Q, Toudert J, Liu F, Mantilla-Perez P, Bajo MM, Russell TP, Martorell J. Adv Energy Mater, 2017, 7: 1701201

    Article  Google Scholar 

  25. Li N, Perea JD, Kassar T, Richter M, Heumueller T, Matt GJ, Hou Y, Güldal NS, Chen H, Chen S, Langner S, Berlinghof M, Unruh T, Brabec CJ. Nat Commun, 2017, 8: 14541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luke J, Speller EM, Wadsworth A, Wyatt MF, Dimitrov S, Lee HKH, Li Z, Tsoi WC, McCulloch I, Bagnis D, Durrant JR, Kim J. Adv Energy Mater, 2019, 9: 1803755

    Article  Google Scholar 

  27. Liu ZX, Yu ZP, Shen Z, He C, Lau TK, Chen Z, Zhu H, Lu X, Xie Z, Chen H, Li CZ. Nat Commun, 2021, 12: 3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du X, Heumueller T, Gruber W, Classen A, Unruh T, Li N, Brabec CJ. Joule, 2019, 3: 215–226

    Article  CAS  Google Scholar 

  29. Classen A, Heumueller T, Wabra I, Gerner J, He Y, Einsiedler L, Li N, Matt GJ, Osvet A, Du X, Hirsch A, Brabec CJ. Adv Energy Mater, 2019, 9: 1902124

    Article  CAS  Google Scholar 

  30. Zhao Y, Wu Z, Liu X, Zhong Z, Zhu R, Yu J. J Mater Chem C, 2021, 9: 13972–13980

    Article  CAS  Google Scholar 

  31. Murray JS, Politzer P. WIREs Comput Mol Sci, 2011, 1: 153–163

    Article  CAS  Google Scholar 

  32. Cui Y, Zhu P, Shi X, Liao X, Chen Y. J Phys Chem C, 2021, 125: 10250–10259

    Article  CAS  Google Scholar 

  33. Cui Y, Zhu P, Liao X, Chen Y. J Mater Chem C, 2020, 8: 15920–15939

    Article  CAS  Google Scholar 

  34. Ma L, Yao H, Wang J, Xu Y, Gao M, Zu Y, Cui Y, Zhang S, Ye L, Hou J. Angew Chem Int Ed, 2021, 60: 15988–15994

    Article  CAS  Google Scholar 

  35. Xu Y, Yao H, Ma L, Hong L, Li J, Liao Q, Zu Y, Wang J, Gao M, Ye L, Hou J. Angew Chem, 2020, 132: 9089–9095

    Article  Google Scholar 

  36. Zhang ZG, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J. Energy Environ Sci, 2014, 7: 1966–1973

    Article  CAS  Google Scholar 

  37. Koster LJA, Kemerink M, Wienk MM, Maturová K, Janssen RAJ. Adv Mater, 2011, 23: 1670–1674

    Article  CAS  PubMed  Google Scholar 

  38. Kyaw AKK, Wang DH, Gupta V, Leong WL, Ke L, Bazan GC, Heeger AJ. ACS Nano, 2013, 7: 4569–4577

    Article  CAS  PubMed  Google Scholar 

  39. Xie G, Zhang Z, Su Z, Zhang X, Zhang J. Nano Energy, 2020, 69: 104447

    Article  CAS  Google Scholar 

  40. Zhang L, Mao H, Huang L, Hu L, Wang X, Tan L, Chen Y. Sci China Chem, 2022, 65: 1623–1633

    Article  Google Scholar 

  41. Xu G, Hu X, Liao X, Chen Y. Chin J Polym Sci, 2021, 39: 1441–1447

    Article  CAS  Google Scholar 

  42. Liao X, Cui Y, Shi X, Yao Z, Zhao H, An Y, Zhu P, Guo Y, Fei X, Zuo L, Gao K, Lin F, Xie Q, Chen L, Ma W, Chen Y, Jen AKY. Mater Chem Front, 2020, 4: 1507–1518

    Article  CAS  Google Scholar 

  43. Zhao Y, Zhou L, Wu X, Wang X, Li Y, Qi Y, Jiang L, Chen G, Zou Y. Chin Chem Lett, 2021, 32: 1359–1362

    Article  CAS  Google Scholar 

  44. Liu T, Yang T, Ma R, Zhan L, Luo Z, Zhang G, Li Y, Gao K, Xiao Y, Yu J, Zou X, Sun H, Zhang M, Dela Peña TA, Xing Z, Liu H, Li X, Li G, Huang J, Duan C, Wong KS, Lu X, Guo X, Gao F, Chen H, Huang F, Li Y, Li Y, Cao Y, Tang B, Yan H. Joule, 2021, 5: 914–930

    Article  CAS  Google Scholar 

  45. Wang M, Zhao Y, Jiang X, Yin Y, Yavuz I, Zhu P, Zhang A, Han GS, Jung HS, Zhou Y, Yang W, Bian J, Jin S, Lee JW, Yang Y. Joule, 2022, 6: 1032–1048

    Article  CAS  Google Scholar 

  46. Liao X, Xie Q, Guo Y, He Q, Chen Z, Yu N, Zhu P, Cui Y, Ma Z, Xu X, Zhu H, Chen Y. Energy Environ Sci, 2022, 15: 384–394

    Article  CAS  Google Scholar 

  47. Nilsson S, Bernasik A, Budkowski A, Moons E. Macromolecules, 2007, 40: 8291–8301

    Article  CAS  Google Scholar 

  48. Xiao Y, Lu X. Mater Today Nano, 2019, 5: 100030

    Article  Google Scholar 

  49. Li S, Zhan L, Sun C, Zhu H, Zhou G, Yang W, Shi M, Li CZ, Hou J, Li Y, Chen H. J Am Chem Soc, 2019, 141: 3073–3082

    Article  CAS  PubMed  Google Scholar 

  50. Chen Z, Chen X, Qiu B, Zhou G, Jia Z, Tao W, Li Y, Yang YM, Zhu H. J Phys Chem Lett, 2020, 11: 3226–3233

    Article  CAS  PubMed  Google Scholar 

  51. Wen T, Liu Z, Chen Z, Zhou J, Shen Z, Xiao Y, Lu X, Xie Z, Zhu H, Li C, Chen H. Angew Chem Int Ed, 2021, 60: 12964–12970

    Article  CAS  Google Scholar 

  52. Chen Z, Chen X, Jia Z, Zhou G, Xu J, Wu Y, Xia X, Li X, Zhang X, Deng C, Zhang Y, Lu X, Liu W, Zhang C, Yang YM, Zhu H. Joule, 2021, 5: 1832–1844

    Article  CAS  Google Scholar 

  53. Guo J, Wu Y, Sun R, Wang W, Guo J, Wu Q, Tang X, Sun C, Luo Z, Chang K, Zhang Z, Yuan J, Li T, Tang W, Zhou E, Xiao Z, Ding L, Zou Y, Zhan X, Yang C, Li Z, Brabec CJ, Li Y, Min J. J Mater Chem A, 2019, 7: 25088–25101

    Article  CAS  Google Scholar 

  54. Hintz H, Sessler C, Peisert H, Egelhaaf HJ, Chassé T. Chem Mater, 2012, 24: 2739–2743

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51973032, 21905043, 51833004, 21875182), “Chenguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (19CG36), the Jiangxi Provincial Natural Science Foundation (20212ACB203005, 20224ACB214002, 20212BAB213018, 20224BAB203015), the Thousand Talents Plan of Jiangxi Province (jxsq2019101051) and the Jiangxi Provincial Education Department Science and Technology Research Foundation (GJJ210310). Y. C. expresses thanks for the support from the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2021008). X-ray data was acquired at beamlines 7.3.3 at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Chenhui Zhu at beamline 7.3.3 for assistance with data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xunfan Liao or Yiwang Chen.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Chen, Z., Zhu, P. et al. Enhancing photostability and power conversion efficiency of organic solar cells by a “sunscreen” ternary strategy. Sci. China Chem. 66, 1179–1189 (2023). https://doi.org/10.1007/s11426-022-1517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1517-2

Navigation