Skip to main content
Log in

Wide-pH-range adaptable ammonia electrosynthesis from nitrate on Cu-Pd interfaces

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Ammonia production via electrochemical nitrate reduction is essential for environmental protection and the emerging hydrogen economy. Complex nitrate wastewater with a wide pH range calls for flexible catalysts with high selectivity. A high Faradaic efficiency (FE) of NH3 cannot be obtained under strong acid or alkaline conditions due to the uncontrollable adsorption energy and coverage of hydrogen species (H*) on active sites. This article describes the design and fabrication of a copper-palladium (Cu-Pd) alloy nanocrystal catalyst that inhibits H2 and nitrite generation in electrolytes with different nitrate concentrations and varied pH. The interfacial sites of Cu-Pd alloys could enhance the adsorption energy and coverage of H* while increasing the reaction rate constant of NO2*-to-NO*, which achieves a rapid conversion of NO2* along with a decreased FE of NO2. Under ambient conditions, optimal FE(NH3) is close to 100% at a wide pH range, with the solar-to-chemical conversion efficiency approaching 4.29%. The combination of thermodynamics and kinetics investigations would offer new insights into the reduction mechanism of NO2* for further development of nitrate reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daiyan R, MacGill I, Amal R. ACS Energy Lett, 2020, 5: 3843–3847

    Article  CAS  Google Scholar 

  2. Ling Y, Ma Q, Yu Y, Zhang B. Trans Tianjin Univ, 2021, 27: 180–200

    Article  CAS  Google Scholar 

  3. Rosca V, Duca M, de Groot MT, Koper MTM. Chem Rev, 2009, 109: 2209–2244

    Article  CAS  PubMed  Google Scholar 

  4. Battino R, Rettich TR, Tominaga T. J Phys Chem Reference Data, 1984, 13: 563–600

    Article  CAS  Google Scholar 

  5. Xue ZH, Zhang SN, Lin YX, Su H, Zhai GY, Han JT, Yu QY, Li XH, Antonietti M, Chen JS. J Am Chem Soc, 2019, 141: 14976–14980

    Article  CAS  PubMed  Google Scholar 

  6. Luo Y, Chen GF, Ding L, Chen X, Ding LX, Wang H. Joule, 2019, 3: 279–289

    Article  CAS  Google Scholar 

  7. Li C, Wang T, Gong J. Trans Tianjin Univ, 2020, 26: 67–91

    Article  CAS  Google Scholar 

  8. Xu T, Ma B, Liang J, Yue L, Liu Q, Li T, Zhao H, Luo Y, Lu S, Sun X. Acta Phys Chim Sin, 2020, 0: 2009043-

    Article  Google Scholar 

  9. Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T. ACS Catal, 2017, 7: 3713–3720

    Article  CAS  Google Scholar 

  10. Zhang X, Wang Y, Liu C, Yu Y, Lu S, Zhang B. Chem Eng J, 2021, 403: 126269

    Article  CAS  Google Scholar 

  11. Jia R, Wang Y, Wang C, Ling Y, Yu Y, Zhang B. ACS Catal, 2020, 10: 3533–3540

    Article  CAS  Google Scholar 

  12. Yu Y, Wang C, Yu Y, Wang Y, Zhang B. Sci China Chem, 2020, 63: 1469–1476

    Article  CAS  Google Scholar 

  13. Chen GF, Yuan Y, Jiang H, Ren SY, Ding LX, Ma L, Wu T, Lu J, Wang H. Nat Energy, 2020, 5: 605–613

    Article  CAS  Google Scholar 

  14. Li J, Zhan G, Yang J, Quan F, Mao C, Liu Y, Wang B, Lei F, Li L, Chan AWM, Xu L, Shi Y, Du Y, Hao W, Wong PK, Wang J, Dou SX, Zhang L, Yu JC. J Am Chem Soc, 2020, 142: 7036–7046

    Article  CAS  PubMed  Google Scholar 

  15. Wu ZY, Karamad M, Yong X, Huang Q, Cullen DA, Zhu P, Xia C, Xiao Q, Shakouri M, Chen FY, Kim JYT, Xia Y, Heck K, Hu Y, Wong MS, Li Q, Gates I, Siahrostami S, Wang H. Nat Commun, 2021, 12: 2870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van Langevelde PH, Katsounaros I, Koper MTM. Joule, 2021, 5: 290–294

    Article  Google Scholar 

  17. Su L, Li K, Zhang H, Fan M, Ying D, Sun T, Wang Y, Jia J. Water Res, 2017, 120: 1–11

    Article  PubMed  Google Scholar 

  18. Vetter KJ. Electrochemical Kinetics: Theoretical Aspects. New York: Elsevier, 2013

    Google Scholar 

  19. Liu H, Park J, Chen Y, Qiu Y, Cheng Y, Srivastava K, Gu S, Shanks BH, Roling LT, Li W. ACS Catal, 2021, 11: 8431–8442

    Article  CAS  Google Scholar 

  20. Pérez-Gallent E, Figueiredo MC, Katsounaros I, Koper MTM. Electrochim Acta, 2017, 227: 77–84

    Article  Google Scholar 

  21. Li L, Wang P, Shao Q, Huang X. Chem Soc Rev, 2020, 49: 3072–3106

    Article  CAS  PubMed  Google Scholar 

  22. Liang Z, Ahn HS, Bard AJ. J Am Chem Soc, 2017, 139: 4854–4858

    Article  CAS  PubMed  Google Scholar 

  23. Duca M, Koper MTM. Energy Environ Sci, 2012, 5: 9726–9742

    Article  CAS  Google Scholar 

  24. Kunimatsu K, Senzaki T, Tsushima M, Osawa M. Chem Phys Lett, 2005, 401: 451–454

    Article  CAS  Google Scholar 

  25. Krstajić N, Popović M, Grgur B, Vojnović M, Šepa D. J Electroanal Chem, 2001, 512: 16–26

    Article  Google Scholar 

  26. Ji L, Peng X, Wang Z. Trans Tianjin Univ, 2020, 26: 373–381

    Article  CAS  Google Scholar 

  27. Li M, Zheng X, Li L, Wei Z. Acta Phys-Chim Sin, 2020, 37: 2007050–2007054

    Google Scholar 

  28. Chen J, Pan A, Zhang W, Cao X, Lu R, Liang S, Cao G. Sci China Mater, 2021, 64: 1150–1158

    Article  CAS  Google Scholar 

  29. Chauhan R, Srivastava VC. Chem Eng J, 2020, 386: 122065

    Article  CAS  Google Scholar 

  30. Feng JX, Wu JQ, Tong YX, Li GR. J Am Chem Soc, 2018, 140: 610–617

    Article  CAS  PubMed  Google Scholar 

  31. Wang M, Cheng X, Ni Y. Dalton Trans, 2019, 48: 823–832

    Article  CAS  PubMed  Google Scholar 

  32. Kannimuthu K, Sangeetha K, Sam Sankar S, Karmakar A, Madhu R, Kundu S. Inorg Chem Front, 2021, 8: 234–272

    Article  CAS  Google Scholar 

  33. Zeradjanin AR, Vimalanandan A, Polymeros G, Topalov AA, Mayrhofer KJJ, Rohwerder M. Phys Chem Chem Phys, 2017, 19: 17019–17027

    Article  CAS  PubMed  Google Scholar 

  34. Ferrin P, Kandoi S, Nilekar AU, Mavrikakis M. Surf Sci, 2012, 606: 679–689

    Article  CAS  Google Scholar 

  35. Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U. J Electrochem Soc, 2005, 152: J23

    Article  Google Scholar 

  36. Watson GW, Wells RPK, Willock DJ, Hutchings GJ. J Phys Chem B, 2000, 105: 4889–4894

    Article  Google Scholar 

  37. Luc W, Rosen J, Jiao F. Catal Today, 2017, 288: 79–84

    Article  CAS  Google Scholar 

  38. Dima GE, de Vooys ACA, Koper MTM. J Electroanal Chem, 2003, 554–555: 15–23

    Article  Google Scholar 

  39. Queffélec C, Forato F, Bujoli B, Knight DA, Fonda E, Humbert B. Phys Chem Chem Phys, 2020, 22: 2193–2199

    Article  PubMed  Google Scholar 

  40. Torreggiani A, Esposti AD, Tamba M, Marconi G, Fini G. J Raman Spectrosc, 2006, 37: 291–298

    Article  CAS  Google Scholar 

  41. Henson MJ, Vance MA, Zhang CX, Liang HC, Karlin KD, Solomon EI. J Am Chem Soc, 2003, 125: 5186–5192

    Article  CAS  PubMed  Google Scholar 

  42. Thamann TJ, Frank P, Willis LJ, Loehr TM. Proc Natl Acad Sci USA, 1982, 79: 6396–6400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fujisawa K, Lehnert N, Ishikawa Y, Okamoto K. Angew Chem, 2004, 116: 5052–5055

    Article  Google Scholar 

  44. Wang Y, Xu A, Wang Z, Huang L, Li J, Li F, Wicks J, Luo M, Nam DH, Tan CS, Ding Y, Wu J, Lum Y, Dinh CT, Sinton D, Zheng G, Sargent EH. J Am Chem Soc, 2020, 142: 5702–5708

    Article  CAS  PubMed  Google Scholar 

  45. Chen FY, Wu ZY, Gupta S, Rivera DJ, Lambeets SV, Pecaut S, Kim JYT, Zhu P, Finfrock YZ, Meira DM, King G, Gao G, Xu W, Cullen DA, Zhou H, Han Y, Perea DE, Muhich CL, Wang H. Nat Nanotechnol, 2022, 17: 759–767

    Article  CAS  PubMed  Google Scholar 

  46. Niu H, Zhang Z, Wang X, Wan X, Kuai C, Guo Y. Small, 2021, 17: 2102396

    Article  CAS  Google Scholar 

  47. Liu JX, Richards D, Singh N, Goldsmith BR. ACS Catal, 2019, 9: 7052–7064

    Article  CAS  Google Scholar 

  48. Machado SAS, Avaca LA. Electrochim Acta, 1994, 39: 1385–1391

    Article  CAS  Google Scholar 

  49. Rebollar L, Intikhab S, Snyder JD, Tang MH. J Electrochem Soc, 2018, 165: J3209–J3221

    Article  CAS  Google Scholar 

  50. Tian X, Zhao P, Sheng W. Adv Mater, 2019, 31: 1808066

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2021YFA1500804), the National Natural Science Foundation of China (22121004, 51861125104), the Natural Science Foundation of Tianjin City (18JCJQJC47500), Haihe Laboratory of Sustainable Chemical Transformations, the Program of Introducing Talents of Discipline to Universities (BP0618007) and the Xplorer Prize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuo Wang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at https://chem.scichina.com and https://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, P., Lin, X. et al. Wide-pH-range adaptable ammonia electrosynthesis from nitrate on Cu-Pd interfaces. Sci. China Chem. 66, 913–922 (2023). https://doi.org/10.1007/s11426-022-1411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1411-0

Keywords

Navigation