Skip to main content
Log in

A gating ultramicroporous metal-organic framework showing high adsorption selectivity, capacity and rate for xylene separation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Adsorptive separation of p-xylene (pX) from xylene isomers is a key process in chemical industry, but known adsorbents cannot simultaneously achieve high adsorption selectivity, capacity, and rate. Here, we demonstrate gating ultramicropore as a solution for this challenge. Slight modification of the synthetic condition gives rise to isomeric metal-organic frameworks α-[Zn(pba)] (MAF-88, H2pba = 4-(1H-pyrazol-4-yl)benzoic acid) and β-[Zn(pba)] (MAF-89) possessing similar pillared-column structures, porosities, and high pX capacities of 2.0 mmol g−1, but very different framework/pore topologies, pore sizes, and pX selectivities. For binary and ternary mixtures of liquid xylene isomers, MAF-88 with narrow one-dimensional (1D) channels shows pX selectivity of 11 and 1.6, while MAF-89 with 3D-connected quasi-discrete pores shows pX selectivity up to 221 and 46, respectively. Thermogravimetry, differential scanning calorimetry, and time-dependent separation experiments reveal that the kinetic effects of the gating pores play more important roles than the thermodynamic effects, which is further confirmed by single-crystal X-ray diffraction and computational simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sholl DS, Lively RP. Nature, 2016, 532: 435–437

    Article  PubMed  Google Scholar 

  2. Rasouli M, Yaghobi N, Chitsazan S, Sayyar MH. Microporous Mesoporous Mater, 2012, 150: 47–54

    Article  CAS  Google Scholar 

  3. Yang Y, Bai P, Guo X. Ind Eng Chem Res, 2017, 56: 14725–14753

    Article  CAS  Google Scholar 

  4. Choudhary VR, Nayak VS, Choudhary TV. Ind Eng Chem Res, 1997, 36: 1812–1818

    Article  CAS  Google Scholar 

  5. Minceva M, Rodrigues AE. Chem Eng Res Des, 2004, 82: 667–681

    Article  CAS  Google Scholar 

  6. Zhou DD, Zhang XW, Mo ZW, Xu YZ, Tian XY, Li Y, Chen XM, Zhang JP. EnergyChem, 2019, 1: 100016

    Article  Google Scholar 

  7. Ye ZM, Zhang XW, Liao PQ, Xie Y, Xu YT, Zhang XF, Wang C, Liu DX, Huang NY, Qiu ZH, Zhou DD, He CT, Zhang JP. Angew Chem Int Ed, 2020, 59: 23322–23328

    Article  CAS  Google Scholar 

  8. Yang L, Qian S, Wang X, Cui X, Chen B, Xing H. Chem Soc Rev, 2020, 49: 5359–5406

    Article  CAS  PubMed  Google Scholar 

  9. Wang B, Xie LH, Wang X, Liu XM, Li J, Li JR. Green Energy Environ, 2018, 3: 191–228

    Article  Google Scholar 

  10. Si Y, Wang W, El-Sayed ESM, Yuan D. Sci China Chem, 2020, 63: 881–889

    Article  CAS  Google Scholar 

  11. Jiang K, Zhang L, Xia T, Yang Y, Li B, Cui Y, Qian G. Sci China Mater, 2019, 62: 1315–1322

    Article  CAS  Google Scholar 

  12. Fu D, Xu Y, Zhao M, Chang Z, Bu X. Sci Bull, 2016, 61: 1255–1259

    Article  CAS  Google Scholar 

  13. Torres-Knoop A, Krishna R, Dubbeldam D. Angew Chem Int Ed, 2014, 53: 7774–7778

    Article  CAS  Google Scholar 

  14. Cui X, Niu Z, Shan C, Yang L, Hu J, Wang Q, Lan PC, Li Y, Wojtas L, Ma S, Xing H. Nat Commun, 2020, 11: 5456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar N, Wang SQ, Mukherjee S, Bezrukov AA, Patyk-Kazmierczak E, O’Nolan D, Kumar A, Yu MH, Chang Z, Bu XH, Zaworotko MJ. Chem Sci, 2020, 11: 6889–6895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li X, Wang J, Bai N, Zhang X, Han X, da Silva I, Morris CG, Xu S, Wilary DM, Sun Y, Cheng Y, Murray CA, Tang CC, Frogley MD, Cinque G, Lowe T, Zhang H, Ramirez-Cuesta AJ, Thomas KM, Bolton LW, Yang S, Schröder M. Nat Commun, 2020, 11: 4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou DD, Chen P, Wang C, Wang SS, Du Y, Yan H, Ye ZM, He CT, Huang RK, Mo ZW, Huang NY, Zhang JP. Nat Mater, 2019, 18: 994–998

    Article  CAS  PubMed  Google Scholar 

  18. Wang P, Otake KI, Hosono N, Kitagawa S. Angew Chem Int Ed, 2021, 60: 7030–7035

    Article  CAS  Google Scholar 

  19. Chai Y, Han X, Li W, Liu S, Yao S, Wang C, Shi W, da-Silva I, Manuel P, Cheng Y, Daemen LD, Ramirez-Cuesta AJ, Tang CC, Jiang L, Yang S, Guan N, Li L. Science, 2020, 368: 1002–1006

    Article  CAS  PubMed  Google Scholar 

  20. Gee JA, Zhang K, Bhattacharyya S, Bentley J, Rungta M, Abichandani JS, Sholl DS, Nair S. J Phys Chem C, 2016, 120: 12075–12082

    Article  CAS  Google Scholar 

  21. du Plessis M, Nikolayenko VI, Barbour LJ. J Am Chem Soc, 2020, 142: 4529–4533

    Article  CAS  PubMed  Google Scholar 

  22. Yang X, Zhou HL, He CT, Mo ZW, Ye JW, Chen XM, Zhang JP. Research, 2019, 2019: 9463719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang XW, Zhou DD, Zhang JP. Chem, 2021, 7: 1006–1019

    Article  CAS  Google Scholar 

  24. Cui WG, Hu TL, Bu XH. Adv Mater, 2020, 32: 1806445

    Article  CAS  Google Scholar 

  25. Gonzalez MI, Kapelewski MT, Bloch ED, Milner PJ, Reed DA, Hudson MR, Mason JA, Barin G, Brown CM, Long JR. J Am Chem Soc, 2018, 140: 3412–3422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mukherjee S, Joarder B, Manna B, Desai AV, Chaudhari AK, Ghosh SK. Sci Rep, 2014, 4: 5761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Laha S, Haldar R, Dwarkanath N, Bonakala S, Sharma A, Hazra A, Balasubramanian S, Maji TK. Angew Chem Int Ed, 2021, 60: 19921–19927

    Article  CAS  Google Scholar 

  28. Lannoeye J, Van de Voorde B, Bozbiyik B, Reinsch H, Denayer J, de Vos D. Microporous Mesoporous Mater, 2016, 226: 292–298

    Article  CAS  Google Scholar 

  29. Lin Y, Zhang J, Pandey H, Dong X, Gong Q, Wang H, Yu L, Zhou K, Yu W, Huang X, Thonhauser T, Han Y, Li J. J Mater Chem A, 2021, 9: 26202–26207

    Article  CAS  Google Scholar 

  30. Jie K, Liu M, Zhou Y, Little MA, Pulido A, Chong SY, Stephenson A, Hughes AR, Sakakibara F, Ogoshi T, Blanc F, Day GM, Huang F, Cooper AI. J Am Chem Soc, 2018, 140: 6921–6930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun N, Wang SQ, Zou R, Cui WG, Zhang A, Zhang T, Li Q, Zhuang ZZ, Zhang YH, Xu J, Zaworotko MJ, Bu XH. Chem Sci, 2019, 10: 8850–8854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moosa B, Alimi LO, Shkurenko A, Fakim A, Bhatt PM, Zhang G, Eddaoudi M, Khashab NM. Angew Chem Int Ed, 2020, 59: 21367–21371

    Article  CAS  Google Scholar 

  33. Shivanna M, Otake KI, Zheng JJ, Sakaki S, Kitagawa S. Chem Commun, 2020, 56: 9632–9635

    Article  CAS  Google Scholar 

  34. Wang P, Kajiwara T, Otake KI, Yao MS, Ashitani H, Kubota Y, Kitagawa S. ACS Appl Mater Interfaces, 2021, 13: 52144–52151

    Article  CAS  Google Scholar 

  35. Tian XY, Chen XX, Wang C, Ye ZM, Zhou DD, Zhang JP. Chin J Chem, 2021, 39: 2523–2528

    Article  CAS  Google Scholar 

  36. Zhang JP, Zhou HL, Zhou DD, Liao PQ, Chen XM. Natl Sci Rev, 2018, 5: 907–919

    Article  CAS  Google Scholar 

  37. Polyukhov DM, Poryvaev AS, Gromilov SA, Fedin MV. Nano Lett, 2019, 19: 6506–6510

    Article  CAS  PubMed  Google Scholar 

  38. Polyukhov DM, Poryvaev AS, Sukhikh AS, Gromilov SA, Fedin MV. ACS Appl Mater Interfaces, 2021, 13: 40830–40836

    Article  PubMed  CAS  Google Scholar 

  39. Chen K, Mousavi SH, Singh R, Snurr RQ, Li G, Webley PA. Chem Soc Rev, 2022, 51: 1139–1166

    Article  CAS  PubMed  Google Scholar 

  40. He CT, Tian JY, Liu SY, Ouyang G, Zhang JP, Chen XM. Chem Sci, 2013, 4: 351–356

    Article  CAS  Google Scholar 

  41. Tonigold M, Lu Y, Mavrandonakis A, Puls A, Staudt R, Möllmer J, Sauer J, Volkmer D. Chem Eur J, 2011, 17: 8671–8695

    Article  CAS  PubMed  Google Scholar 

  42. Choi HJ, Dinca M, Long JR. J Am Chem Soc, 2008, 130: 7848–7850

    Article  CAS  PubMed  Google Scholar 

  43. Olson DH, Kokotailo GT, Lawton SL, Meier WM. J Phys Chem, 1981, 85: 2238–2243

    Article  CAS  Google Scholar 

  44. Ye ZM, Xie KP, Wang C, Zhang XW, Zhou HL, Zhang JP. Inorg Chem, 2021, 60: 11893–11896

    Article  CAS  PubMed  Google Scholar 

  45. Dong YB, Jiang YY, Li J, Ma JP, Liu FL, Tang B, Huang RQ, Batten SR. J Am Chem Soc, 2007, 129: 4520–4521

    Article  CAS  PubMed  Google Scholar 

  46. Zhang JP, Huang XC, Chen XM. Chem Soc Rev, 2009, 38: 2385–2396

    Article  CAS  PubMed  Google Scholar 

  47. Simonin JP. Chem Eng J, 2016, 300: 254–263

    Article  CAS  Google Scholar 

  48. Qiu T, Zeng Y, Ye C, Tian H. J Chem Eng Data, 2012, 57: 1551–1556

    Article  CAS  Google Scholar 

  49. Li Y, Cao XY, Zheng K, Zhang XW, Zhou DD, Zhang WX, Chen XM, Zhang JP. CCS Chem, 2021, 4: 1587–1596

    Article  CAS  Google Scholar 

  50. Wu H, Gong Q, Olson DH, Li J. Chem Rev, 2012, 112: 836–868

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21731007, 22090061, 21821003, 22161021). C.-T. He acknowledges the support of Jiangxi Province (jxsq2018106041) and the “Young Elite Scientists Sponsorship Program” by CAST. We thank the staffs of BL17B/BL18U/BL19U1/BL19U2/BL01B beamlines at National Center for Protein Sciences Shanghai and Shanghai Synchrotron Radiation Facility, for assistance in collecting the single-crystal diffraction data of MAF-89, and thank Prof. Ming-Liang Tong and Mr. Kai-Ping Xie from Sun Yat-Sen University for assistance in collecting the single-crystal diffraction data of MAF-88.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Ting He or Jie-Peng Zhang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

11426_2022_1304_MOESM1_ESM.pdf

A gating ultramicroporous metal-organic framework showing high adsorption selectivity, capacity and rate for xylene separation

checkCIF/PLATON report

checkCIF/PLATON report

Supplementary material, approximately 340 KB.

Supplementary material, approximately 1.03 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, ZM., Zhang, XF., Liu, DX. et al. A gating ultramicroporous metal-organic framework showing high adsorption selectivity, capacity and rate for xylene separation. Sci. China Chem. 65, 1552–1558 (2022). https://doi.org/10.1007/s11426-022-1304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1304-1

Keywords

Navigation