Skip to main content
Log in

Synergistic effect of solvent and solid additives on morphology optimization for high-performance organic solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Controlling the photoactive layer morphology towards nanoscale bi-continuous donor/acceptor interpenetrating networks is a key issue to build high-performance organic solar cells (OSCs). Due to the distinct properties between donor and acceptor materials, casting an active layer from a single solvent solution usually results in either insufficient or excessive phase separation that reduces the device performance. In comparison to the fullerene acceptors with closed-cage structures, the currently dominant non-fullerene acceptors possess the similar anisotropic π-π interactions with p-type organic semiconductor donors, giving rise to the complexity of the morphology regulation. Herein, we employ 4,4′-dimethoxyoctafluorobiphenyl (OFP) with strong crystallinity as a volatile solid additive to optimize the active layer morphology of OSCs. The synergistic effect of 1-chloronaphthalene (CN) and OFP as dual additives shows supreme capability on optimizing the morphology over the conventional additive of CN, which is in favor of improving charge transport and suppressing charge recombination for higher fill factors in various systems. In particular, the PTQ10:m-BTP-C6Ph-based device processed by the additive showed a remarkable power-conversion efficiency (PCE) of 17.74%, whereas the control device processed by CN additive yielded a relatively lower PCE of 16.45%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Y, Xu G, Cui C, Li Y. Adv Energy Mater, 2018, 8: 1701791

    Article  Google Scholar 

  2. Krebs FC, Espinosa N, Hösel M, Søndergaard RR, Jørgensen M. Adv Mater, 2014, 26: 29–39

    Article  CAS  PubMed  Google Scholar 

  3. Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161

    Article  CAS  Google Scholar 

  4. Servaites JD, Ratner MA, Marks TJ. Energy Environ Sci, 2011, 4: 4410

    Article  CAS  Google Scholar 

  5. Facchetti A. Mater Today, 2013, 16: 123–132

    Article  CAS  Google Scholar 

  6. Wei Q, Liu W, Leclerc M, Yuan J, Chen H, Zou Y. Sci China Chem, 2020, 63: 1352–1366

    Article  CAS  Google Scholar 

  7. Cui C, Li Y. Energy Environ Sci, 2019, 12: 3225–3246

    Article  CAS  Google Scholar 

  8. Li Y. Acc Chem Res, 2012, 45: 723–733

    Article  CAS  PubMed  Google Scholar 

  9. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003

    Article  CAS  Google Scholar 

  10. Lee C, Lee S, Kim GU, Lee W, Kim BJ. Chem Rev, 2019, 119: 8028–8086

    Article  CAS  PubMed  Google Scholar 

  11. Cai Y, Huo L, Sun Y. Adv Mater, 2017, 29: 1605437

    Article  Google Scholar 

  12. Yao H, Wang J, Xu Y, Zhang S, Hou J. Acc Chem Res, 2020, 53: 822–832

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Wan X, Long G. Acc Chem Res, 2013, 46: 2645–2655

    Article  CAS  PubMed  Google Scholar 

  14. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  15. Heeger AJ. Adv Mater, 2013, 26: 10–28

    Article  PubMed  Google Scholar 

  16. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174

    Article  CAS  PubMed  Google Scholar 

  17. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151

    Article  CAS  PubMed  Google Scholar 

  18. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151

    Article  CAS  Google Scholar 

  19. Wu Q, Wang W, Wang T, Sun R, Guo J, Wu Y, Jiao X, Brabec CJ, Li Y, Min J. Sci China Chem, 2020, 63: 1449–1460

    Article  CAS  Google Scholar 

  20. Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746–752

    Article  CAS  Google Scholar 

  21. Ma R, Liu T, Luo Z, Guo Q, Xiao Y, Chen Y, Li X, Luo S, Lu X, Zhang M, Li Y, Yan H. Sci China Chem, 2020, 63: 325–330

    Article  CAS  Google Scholar 

  22. Cui C, Li Y. Aggregate, 2021, 2: e31

    Google Scholar 

  23. Zhao F, Wang C, Zhan X. Adv Energy Mater, 2018, 8: 1703147

    Article  Google Scholar 

  24. Liao HC, Ho CC, Chang CY, Jao MH, Darling SB, Su WF. Mater Today, 2013, 16: 326–336

    Article  CAS  Google Scholar 

  25. McDowell C, Abdelsamie M, Toney MF, Bazan GC. Adv Mater, 2018, 30: 1707114

    Article  Google Scholar 

  26. Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ. J Am Chem Soc, 2008, 130: 3619–3623

    Article  CAS  PubMed  Google Scholar 

  27. Brady MA, Su GM, Chabinyc ML. Soft Matter, 2011, 7: 11065–11077

    Article  CAS  Google Scholar 

  28. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC. Nat Mater, 2007, 6: 497–500

    Article  CAS  PubMed  Google Scholar 

  29. Yao Y, Hou J, Xu Z, Li G, Yang Y. Adv Funct Mater, 2008, 18: 1783–1789

    Article  CAS  Google Scholar 

  30. Brinkmann M, Wittmann JC. Adv Mater, 2006, 18: 860–863

    Article  CAS  Google Scholar 

  31. Müller C, Aghamohammadi M, Himmelberger S, Sonar P, Garriga M, Salleo A, Campoy-Quiles M. Adv Funct Mater, 2013, 23: 2368–2377

    Article  Google Scholar 

  32. Kim JY, Yang DS, Shin J, Bilby D, Chung K, Um HA, Chun J, Pyo S, Cho MJ, Kim J, Choi DH. ACS Appl Mater Interfaces, 2015, 7: 13431–13439

    Article  CAS  PubMed  Google Scholar 

  33. Dörling B, Vohra V, Dao TT, Garriga M, Murata H, Campoy-Quiles M. J Mater Chem C, 2014, 2: 3303–3310

    Article  Google Scholar 

  34. Vohra V, Dörling B, Higashimine K, Murata H. Appl Phys Express, 2015, 9: 012301

    Article  Google Scholar 

  35. Fahey DP, Dougherty William G. J, Kassel WS, Wang X, Beckmann PA. J Phys Chem A, 2012, 116: 11946–11956

    Article  CAS  PubMed  Google Scholar 

  36. Beckmann PA, Mallory CW, Mallory FB, Rheingold AL, Wang X. ChemPhysChem, 2015, 16: 1509–1519

    Article  CAS  PubMed  Google Scholar 

  37. Chai G, Chang Y, Zhang J, Xu X, Yu L, Zou X, Li X, Chen Y, Luo S, Liu B, Bai F, Luo Z, Yu H, Liang J, Liu T, Wong KS, Zhou H, Peng Q, Yan H. Energy Environ Sci, 2021, 14: 3469–3479

    Article  CAS  Google Scholar 

  38. Vandewal K, Widmer J, Heumueller T, Brabec CJ, McGehee MD, Leo K, Riede M, Salleo A. Adv Mater, 2014, 26: 3839–3843

    Article  CAS  PubMed  Google Scholar 

  39. Credgington D, Durrant JR. J Phys Chem Lett, 2012, 3: 1465–1478

    Article  CAS  PubMed  Google Scholar 

  40. Wu Y, Zheng Y, Yang H, Sun C, Dong Y, Cui C, Yan H, Li Y. Sci China Chem, 2020, 63: 265–271

    Article  CAS  Google Scholar 

  41. Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM. Phys Rev Lett, 2004, 93: 216601

    Article  CAS  PubMed  Google Scholar 

  42. Schilinsky P, Waldauf C, Brabec CJ. Appl Phys Lett, 2002, 81: 3885–3887

    Article  CAS  Google Scholar 

  43. Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM. Appl Phys Lett, 2005, 86: 123509

    Article  Google Scholar 

  44. Owens DK, Wendt RC. J Appl Polym Sci, 1969, 13: 1741–1747

    Article  CAS  Google Scholar 

  45. Nilsson S, Bernasik A, Budkowski A, Moons E. Macromolecules, 2007, 40: 8291–8301

    Article  CAS  Google Scholar 

  46. Bergqvist J, Lindqvist C, Bäcke O, Ma Z, Tang Z, Tress W, Gustafsson S, Wang E, Olsson E, Andersson MR, Inganäs O, Müller C. J Mater Chem A, 2014, 2: 6146–6152

    Article  CAS  Google Scholar 

  47. Han J, Bao F, Huang D, Wang X, Yang C, Yang R, Jian X, Wang J, Bao X, Chu J. Adv Funct Mater, 2020, 30: 2003654

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (22022509, 51873140 and 51820105003), Jiangsu Provincial Natural Science Foundation (BK20190095), Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Collaborative Innovation Center of Suzhou Nano Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaohua Cui.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, C., Yang, H., Zhang, Q. et al. Synergistic effect of solvent and solid additives on morphology optimization for high-performance organic solar cells. Sci. China Chem. 64, 2017–2024 (2021). https://doi.org/10.1007/s11426-021-1114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1114-3

Keywords

Navigation