Skip to main content
Log in

Intermolecular charge-transfer aggregates enable high-efficiency near-infrared emissions by nonadiabatic coupling suppression

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Pursuing purely organic materials with high-efficiency near-infrared (NIR) emissions is fundamentally limited by the large non-radiative decay rates (knr) governed by the energy gap law. To date, reported endeavors to decelerate knr are mainly focused on reducing the electron-vibration coupling with the electronic nonadiabatic coupling assumed as a constant. Here, we demonstrated a feasible and innovative strategy by employing intermolecular charge-transfer (CT) aggregates (CTA) to realize high-efficiency NIR emissions via nonadiabatic coupling suppression. The formation of CTA engenders intermolecular CT in the excited states; thereby, not only reducing the electronic nonadiabatic coupling and contributing to small knr for high-efficiency NIR photoluminescence, but also stabilizing excited-state energies and achieving thermally activated delayed fluorescence for high-efficiency NIR electroluminescence. This work provides new insights into aggregates and opens a new avenue for organic materials to overcome the energy gap law and achieve high-efficiency NIR emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bünzli JCG, Eliseeva SV. J Rare Earths, 2010, 28: 824–842

    Article  Google Scholar 

  2. Kenry, Duan Y, Liu B. Adv Mater, 2018, 30: 1802394

    Article  Google Scholar 

  3. Qian G, Wang ZY. Chem Asian J, 2010, 5: 1006–1029

    Article  CAS  PubMed  Google Scholar 

  4. Zampetti A, Minotto A, Cacialli F. Adv Funct Mater, 2019, 29: 1807623

    Article  Google Scholar 

  5. Chen S, Weitemier AZ, Zeng X, He L, Wang X, Tao Y, Huang AJY, Hashimotodani Y, Kano M, Iwasaki H, Parajuli LK, Okabe S, Teh DBL, All AH, Tsutsui-Kimura I, Tanaka KF, Liu X, McHugh TJ. Science, 2018, 359: 679–684

    Article  CAS  PubMed  Google Scholar 

  6. Khan Y, Han D, Pierre A, Ting J, Wang X, Lochner CM, Bovo G, Yaacobi-Gross N, Newsome C, Wilson R, Arias AC. Proc Natl Acad Sci USA, 2018, 115: E11015

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamanaka T, Nakanotani H, Hara S, Hirohata T, Adachi C. Appl Phys Express, 2017, 10: 074101

    Article  Google Scholar 

  8. Jeon Y, Choi HR, Kwon JH, Choi S, Nam KM, Park KC, Choi KC. Light Sci Appl, 2019, 8: 114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khan Y, Han D, Ting J, Ahmed M, Nagisetty R, Arias AC. IEEE Access, 2019, 7: 128114

    Article  Google Scholar 

  10. Siebrand W. J Chem Phys, 1967, 46: 440–447

    Article  CAS  Google Scholar 

  11. Englman R, Jortner J. Mol Phys, 1970, 18: 145–164

    Article  CAS  Google Scholar 

  12. Yao L, Zhang S, Wang R, Li W, Shen F, Yang B, Ma Y. Angew Chem Int Ed, 2014, 53: 2119–2123

    Article  CAS  Google Scholar 

  13. Wang S, Yan X, Cheng Z, Zhang H, Liu Y, Wang Y. Angew Chem Int Ed, 2015, 54: 13068–13072

    Article  CAS  Google Scholar 

  14. Peng Q, Obolda A, Zhang M, Li F. Angew Chem Int Ed, 2015, 54: 7091–7095

    Article  CAS  Google Scholar 

  15. Ai X, Evans EW, Dong S, Gillett AJ, Guo H, Chen Y, Hele TJH, Friend RH, Li F. Nature, 2018, 563: 536–540

    Article  CAS  PubMed  Google Scholar 

  16. Deng C, Niu Y, Peng Q, Qin A, Shuai Z, Tang BZ. J Chem Phys, 2011, 135: 014304

    Article  PubMed  Google Scholar 

  17. Metcalfe J, Phillips D. J Chem Soc Faraday Trans 2, 1976, 72: 1574–1583

    Article  CAS  Google Scholar 

  18. Siebrand W, Williams DF. J Chem Phys, 1968, 49: 1860–1871

    Article  CAS  Google Scholar 

  19. Yang J, Chi Z, Zhu W, Tang BZ, Li Z. Sci China Chem, 2019, 62: 1090–1098

    Article  CAS  Google Scholar 

  20. Wu Q, Deng C, Peng Q, Niu Y, Shuai Z. J Comput Chem, 2012, 33: 1862–1869

    Article  CAS  PubMed  Google Scholar 

  21. Chen WC, Chou PT, Cheng YC. J Phys Chem C, 2019, 123: 10225–10236

    Article  CAS  Google Scholar 

  22. Wei YC, Wang SF, Hu Y, Liao LS, Chen DG, Chang KH, Wang CW, Liu SH, Chan WH, Liao JL, Hung WY, Wang TH, Chen PT, Hsu HF, Chi Y, Chou PT. Nat Photonics, 2020, 14: 570–577

    Article  CAS  Google Scholar 

  23. Chernyak V, Mukamel S. J Chem Phys, 2000, 112: 3572–3579

    Article  CAS  Google Scholar 

  24. Xue J, Liang Q, Wang R, Hou J, Li W, Peng Q, Shuai Z, Qiao J. Adv Mater, 2019, 31: 1808242

    Article  Google Scholar 

  25. Hirata S, Sakai Y, Masui K, Tanaka H, Lee SY, Nomura H, Nakamura N, Yasumatsu M, Nakanotani H, Zhang Q, Shizu K, Miyazaki H, Adachi C. Nat Mater, 2014, 14: 330–336

    Article  PubMed  Google Scholar 

  26. Zhang Q, Kuwabara H, Potscavage Jr. WJ, Huang S, Hatae Y, Shibata T, Adachi C. J Am Chem Soc, 2014, 136: 18070–18081

    Article  CAS  PubMed  Google Scholar 

  27. Chen WC, Huang B, Ni SF, Xiong Y, Rogach AL, Wan Y, Shen D, Yuan Y, Chen JX, Lo MF, Cao C, Zhu ZL, Wang Y, Wang P, Liao LS, Lee CS. Adv Funct Mater, 2019, 29: 1903112

    Article  Google Scholar 

  28. Liang Q, Xu J, Xue J, Qiao J. Chem Commun, 2020, 56: 8988–8991

    Article  CAS  Google Scholar 

  29. Ye H, Kim DH, Chen X, Sandanayaka ASD, Kim JU, Zaborova E, Canard G, Tsuchiya Y, Choi EY, Wu JW, Fages F, Bredas JL, D’Aléo A, Ribierre JC, Adachi C. Chem Mater, 2018, 30: 6702–6710

    Article  CAS  Google Scholar 

  30. Madigan CF, Bulović V. Phys Rev Lett, 2003, 91: 247403

    Article  PubMed  Google Scholar 

  31. Wang M, Huang YH, Lin KS, Yeh TH, Duan J, Ko TY, Liu SW, Wong KT, Hu B. Adv Mater, 2019, 31: 1904114

    Article  CAS  Google Scholar 

  32. Kronik L, Kümmel S. Adv Mater, 2018, 30: 1706560

    Article  Google Scholar 

  33. Shao Y, Gan Z, Epifanovsky E, Gilbert ATB, Wormit M, Kussmann J, Lange AW, Behn A, Deng J, Feng X, Ghosh D, Goldey M, Horn PR, Jacobson LD, Kaliman I, Khaliullin RZ, Kuś T, Landau A, Liu J, Proynov EI, Rhee YM, Richard RM, Rohrdanz MA, Steele RP, Sundstrom EJ, Woodcock III HL, Zimmerman PM, Zuev D, Albrecht B, Alguire E, Austin B, Beran GJO, Bernard YA, Berquist E, Brandhorst K, Bravaya KB, Brown ST, Casanova D, Chang CM, Chen Y, Chien SH, Closser KD, Crittenden DL, Diedenhofen M, DiStasio Jr. RA, Do H, Dutoi AD, Edgar RG, Fatehi S, Fusti-Molnar L, Ghysels A, Golubeva-Zadorozhnaya A, Gomes J, Hanson-Heine MWD, Harbach PHP, Hauser AW, Hohenstein EG, Holden ZC, Jagau TC, Ji H, Kaduk B, Khistyaev K, Kim J, Kim J, King RA, Klunzinger P, Kosenkov D, Kowalczyk T, Krauter CM, Lao KU, Laurent AD, Lawler KV, Levchenko SV, Lin CY, Liu F, Livshits E, Lochan RC, Luenser A, Manohar P, Manzer SF, Mao SP, Mardirossian N, Marenich AV, Maurer SA, Mayhall NJ, Neuscamman E, Oana CM, Olivares-Amaya R, O’Neill DP, Parkhill JA, Perrine TM, Peverati R, Prociuk A, Rehn DR, Rosta E, Russ NJ, Sharada SM, Sharma S, Small DW, Sodt A, Stein T, Stück D, Su YC, Thom AJW, Tsuchimochi T, Vanovschi V, Vogt L, Vydrov O, Wang T, Watson MA, Wenzel J, White A, Williams CF, Yang J, Yeganeh S, Yost SR, You ZQ, Zhang IY, Zhang X, Zhao Y, Brooks BR, Chan GKL, Chipman DM, Cramer CJ, Goddard III WA, Gordon MS, Hehre WJ, Klamt A, Schaefer III HF, Schmidt MW, Sherrill CD, Truhlar DG, Warshel A, Xu X, Aspuru-Guzik A, Baer R, Bell AT, Besley NA, Chai JD, Dreuw A, Dunietz BD, Furlani TR, Gwaltney SR, Hsu CP, Jung Y, Kong J, Lambrecht DS, Liang WZ, Ochsenfeld C, Rassolov VA, Slipchenko LV, Subotnik JE, Van Voorhis T, Herbert JM, Krylov AI, Gill PMW, Head-Gordon M. Mol Phys, 2015, 113: 184–215

    Article  CAS  Google Scholar 

  34. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  35. Biswas S, Pramanik A, Pal S, Sarkar P. J Phys Chem C, 2017, 121: 2574–2587

    Article  CAS  Google Scholar 

  36. Chen XK, Ravva MK, Li H, Ryno SM, Brédas JL. Adv Energy Mater, 2016, 6: 1601325

    Article  Google Scholar 

  37. Balijapalli U, Nagata R, Yamada N, Nakanotani H, Tanaka M, D’Aléo A, Placide V, Mamada M, Tsuchiya Y, Adachi C. Angew Chem Int Ed, 2021, 60: 8477–8482

    Article  CAS  Google Scholar 

  38. Yuan Y, Hu Y, Zhang YX, Lin JD, Wang YK, Jiang ZQ, Liao LS, Lee ST. Adv Funct Mater, 2017, 27: 1700986

    Article  Google Scholar 

  39. Kim DH, D’Aléo A, Chen XK, Sandanayaka ADS, Yao D, Zhao L, Komino T, Zaborova E, Canard G, Tsuchiya Y, Choi E, Wu JW, Fages F, Brédas JL, Ribierre JC, Adachi C. Nat Photon, 2018, 12: 98–104

    Article  CAS  Google Scholar 

  40. Yang T, Liang B, Cheng Z, Li C, Lu G, Wang Y. J Phys Chem C, 2019, 123: 18585–18592

    Article  CAS  Google Scholar 

  41. Li C, Duan L, Li H, Qiu Y. Org Electron, 2013, 14: 3312–3317

    Article  CAS  Google Scholar 

  42. Murawski C, Leo K, Gather MC. Adv Mater, 2013, 25: 6801–6827

    Article  CAS  PubMed  Google Scholar 

  43. Hasan M, Shukla A, Ahmad V, Sobus J, Bencheikh F, McGregor SKM, Mamada M, Adachi C, Lo SC, Namdas EB. Adv Funct Mater, 2020, 30: 2000580

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51773109, 21788102), National Key R&D Program of China (2020YFA0715001, 2017YFA0204501), National Postdoctoral Program for Innovative Talents (BX20180159), and the Project funded by China Postdoctoral Science Foundation (2019M660606). Research presented in this article was posted on a preprint server prior to publication in Science China Chemistry. The corresponding preprint article can be found here: https://doi.org/10.26434/chemrxiv.14330591.v1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajun Ren or Juan Qiao.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supplemental Information

11426_2021_1096_MOESM1_ESM.docx

Intermolecular charge-transfer aggregates enable high-efficiency near-infrared emissions by nonadiabatic coupling suppression, approximately 14.7 MB.

Supplementary material, approximately 476 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Xu, J., Ren, J. et al. Intermolecular charge-transfer aggregates enable high-efficiency near-infrared emissions by nonadiabatic coupling suppression. Sci. China Chem. 64, 1786–1795 (2021). https://doi.org/10.1007/s11426-021-1096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1096-8

Navigation