Skip to main content
Log in

Interlayer ligand engineering of β-Ni(OH)2 for oxygen evolution reaction

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Oxygen evolution reaction (OER) is a bottleneck process for many electrochemical devices due to the sluggish kinetics, for which advanced electrocatalysts should be carefully designed. Nickle-based materials have been extensively studied to catalyze OER. However, their performances are still below the expectation and the active sites are often controversial. Herein, we have successfully modulated the electronic and surface properties of layered •-Ni(OH)2 by the interlayer ligand engineering, aiming to design novel efficient electrocatalysts and unveil the catalysis mechanism. By one-step solvothermal reaction, alkoxyl substituted •-Ni(OH)2 with variable interlayer distances is obtained, and the ethoxyl substituted one (NiEt) shows great potential for efficient OER. With the assistance of powder X-ray diffraction and crystalline structure computational simulation, the formula of alkoxyl substituted •-Ni(OH)2 are determined. Operando X-ray absorption spectroscopy studies combined with ex-situ analyses revealed that the critical active species of NiEt is formed via hydroxylation and subsequent de-protonation, with high valent Niδ+ (3<δ≤3.66). The corresponding catalytic reaction pathway and mechanism are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM. Chem Soc Rev, 2017, 46: 337–365

    Article  CAS  PubMed  Google Scholar 

  2. Fu J, Liang R, Liu G, Yu A, Bai Z, Yang L, Chen Z. Adv Mater, 2018, 31: 1805230

    Article  CAS  Google Scholar 

  3. Dinh CT, Burdyny T, Kibria MG, Seifitokaldani A, Gabardo CM, García de Arquer FP, Kiani A, Edwards JP, De Luna P, Bushuyev OS, Zou C, Quintero-Bermudez R, Pang Y, Sinton D, Sargent EH. Science, 2018, 360: 783–787

    Article  CAS  PubMed  Google Scholar 

  4. Zhang J, Ji Y, Wang P, Shao Q, Li Y, Huang X. Adv Funct Mater, 2019, 30: 1906579

    Article  CAS  Google Scholar 

  5. Lyu Y, Wang R, Tao L, Zou Y, Zhou H, Liu T, Zhou Y, Huo J, Jiang SP, Zheng J, Wang S. Appl Catal B-Environ, 2019, 248: 277–285

    Article  CAS  Google Scholar 

  6. Zheng X, Chen Y, Zheng X, Zhao G, Rui K, Li P, Xu X, Cheng Z, Dou SX, Sun W. Adv Energy Mater, 2019, 9: 1803482

    Article  CAS  Google Scholar 

  7. Zhou P, He J, Zou Y, Wang Y, Xie C, Chen R, Zang S, Wang S. Sci China Chem, 2019, 62: 1365–1370

    Article  CAS  Google Scholar 

  8. Zhang B, Zheng X, Voznyy O, Comin R, Bajdich M, Garcia-Melchor M, Han L, Xu J, Liu M, Zheng L, Garcia de Arquer FP, Dinh CT, Fan F, Yuan M, Yassitepe E, Chen N, Regier T, Liu P, Li Y, De Luna P, Janmohamed A, Xin HL, Yang H, Vojvodic A, Sargent EH. Science, 2016, 352: 333–337

    Article  CAS  PubMed  Google Scholar 

  9. Wang H, Wang J, Pi Y, Shao Q, Tan Y, Huang X. Angew Chem Int Ed, 2019, 58: 2316–2320

    Article  CAS  Google Scholar 

  10. Diaz-Morales O, Ledezma-Yanez I, Koper MTM, Calle-Vallejo F. ACS Catal, 2015, 5: 5380–5387

    Article  CAS  Google Scholar 

  11. Zhang J, Liu J, Xi L, Yu Y, Chen N, Sun S, Wang W, Lange KM, Zhang B. J Am Chem Soc, 2018, 140: 3876–3879

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Zhao Y, An W, Xing L, Gao Y, Liu J. J Mater Chem A, 2017, 5: 10039–10047

    Article  CAS  Google Scholar 

  13. Zhou D, Wang S, Jia Y, Xiong X, Yang H, Liu S, Tang J, Zhang J, Liu D, Zheng L, Kuang Y, Sun X, Liu B. Angew Chem Int Ed, 2019, 58: 736–740

    Article  CAS  Google Scholar 

  14. Xie J, Zhang X, Zhang H, Zhang J, Li S, Wang R, Pan B, Xie Y. Adv Mater, 2017, 29: 1604765

    Article  CAS  Google Scholar 

  15. Yeo BS, Bell AT. J Phys Chem C, 2012, 116: 8394–8400

    Article  CAS  Google Scholar 

  16. Xu L, Jiang Q, Xiao Z, Li X, Huo J, Wang S, Dai L. Angew Chem Int Ed, 2016, 55: 5277–5281

    Article  CAS  Google Scholar 

  17. Gao M, Sheng W, Zhuang Z, Fang Q, Gu S, Jiang J, Yan Y. J Am Chem Soc, 2014, 136: 7077–7084

    Article  CAS  PubMed  Google Scholar 

  18. Wygant BR, Kawashima K, Mullins CB. ACS Energy Lett, 2018, 3: 2956–2966

    Article  CAS  Google Scholar 

  19. Mabayoje O, Shoola A, Wygant BR, Mullins CB. ACS Energy Lett, 2016, 1: 195–201

    Article  CAS  Google Scholar 

  20. Huang J, Li Y, Zhang Y, Rao G, Wu C, Hu Y, Wang X, Lu R, Li Y, Xiong J. Angew Chem Int Ed, 2019, 58: 17458–17464

    Article  CAS  Google Scholar 

  21. Zhu W, Yue X, Zhang W, Yu S, Zhang Y, Wang J, Wang J. Chem Commun, 2016, 52: 1486–1489

    Article  CAS  Google Scholar 

  22. Friebel D, Louie MW, Bajdich M, Sanwald KE, Cai Y, Wise AM, Cheng MJ, Sokaras D, Weng TC, Alonso-Mori R, Davis RC, Bargar JR, Nørskov JK, Nilsson A, Bell AT. J Am Chem Soc, 2015, 137: 1305–1313

    Article  CAS  PubMed  Google Scholar 

  23. Su X, Wang Y, Zhou J, Gu S, Li J, Zhang S. J Am Chem Soc, 2018, 140: 11286–11292

    Article  CAS  PubMed  Google Scholar 

  24. Trotochaud L, Young SL, Ranney JK, Boettcher SW. J Am Chem Soc, 2014, 136: 6744–6753

    Article  CAS  PubMed  Google Scholar 

  25. Wang D, Zhou J, Hu Y, Yang J, Han N, Li Y, Sham TK. J Phys Chem C, 2015, 119: 19573–19583

    Article  CAS  Google Scholar 

  26. Xiao H, Shin H, Goddard III WA. Proc Natl Acad Sci USA, 2018, 115: 5872–5877

    Article  CAS  PubMed  Google Scholar 

  27. Eslamibidgoli MJ, Groß A, Eikerling M. Phys Chem Chem Phys, 2017, 19: 22659–22669

    Article  CAS  PubMed  Google Scholar 

  28. Jahangiri S, Mosey NJ. Phys Chem Chem Phys, 2018, 20: 11444–11453

    Article  CAS  PubMed  Google Scholar 

  29. Chang YH, Hau NY, Liu C, Huang YT, Li CC, Shih K, Feng SP. Nanoscale, 2014, 6: 15309–15315

    Article  CAS  PubMed  Google Scholar 

  30. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  31. Kresse G, Furthmüller J. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  32. Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C, Xiao R. Chin Phys B, 2016, 25: 018212

    Article  CAS  Google Scholar 

  33. Blöchl PE. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  PubMed  Google Scholar 

  35. Momma K, Izumi F. J Appl Crystlogr, 2011, 44: 1272–11276

    Article  CAS  Google Scholar 

  36. Zhu K, Hua W, Wang X. Chem Lett, 2011, 40: 156–158

    Article  CAS  Google Scholar 

  37. Yu X, Zhao J, Zheng LR, Tong Y, Zhang M, Xu G, Li C, Ma J, Shi G. ACS Energy Lett, 2017, 3: 237–244

    Article  CAS  Google Scholar 

  38. Huang J, Chen J, Yao T, He J, Jiang S, Sun Z, Liu Q, Cheng W, Hu F, Jiang Y, Pan Z, Wei S. Angew Chem Int Ed, 2015, 54: 8722–8727

    Article  CAS  Google Scholar 

  39. Ichiyanagi Y, Kondoh H, Yokoyama T, Okamoto K, Nagai K, Ohta T. Chem Phys Lett, 2003, 379: 345–350

    Article  CAS  Google Scholar 

  40. Heo Y, Choi S, Bak J, Kim HS, Bae HB, Chung SY. Adv Energy Mater, 2018, 8: 1802481

    Article  CAS  Google Scholar 

  41. Demourgues A, Gautier L, Chadwick AV, Delmas C. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mater Atoms, 1997, 133: 39–44

    Article  CAS  Google Scholar 

  42. Wang B, Huang H, Huang M, Yan P, Isimjan TT, Yang X. Sci China Chem, 2020, 63: 841–849

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (531107051102), the National Natural Science Foundation of China (51402100, 21825201, 21573066, 21805080, 21902047) and the Provincial Natural Science Foundation of Hunan (2016TP1009, 2020JJ5045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuqin Zou or Xia Lu.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting Information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Zou, Y., Huang, Y. et al. Interlayer ligand engineering of β-Ni(OH)2 for oxygen evolution reaction. Sci. China Chem. 63, 1684–1693 (2020). https://doi.org/10.1007/s11426-020-9844-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9844-2

Navigation