Abstract
In comparison to widely adopted bulk heterojunction (BHJ) structures for organic solar cells (OSC), exploiting the sequential deposition to form planar heterojunction (PHJ) structures enables to realize the favorable vertical phase separation to facilitate charge extraction and reduce charge recombination in OSCs. However, effective tunings on the power conversion efficiency (PCE) in PHJ-OSCs are still restrained by the currently available methods. Based on a polymeric donor PBDBT-2F (PBDBT=Poly [[4,8-bis [5-(2-ethylhexyl)-4-fluoro-2-thienyl]benzo [1,2-b:4,5-b′]dithiophene-2,6-diyl]-2,5-thiophenediyl [5,7-bis (2-ethylhexyl)-4,8-dioxo-4H,8H-benzo [1,2-c:4,5-c′]dithiophene-1,3-diyl]-2,5-thiophenediyl]) and a non-fullerene (NF) acceptor Y6, we proposed a strategy to improve the properties of photovoltaic performances in PHJ-based OSCs through dilute dispersions of the PBDBT-2F donor into the acceptor-dominant phase with the sequential film deposition. With the control of donor dispersions, the charge transport balance in the PHJ-OSCs is improved, leading to the expedited photocarrier sweep-out with reduced bimolecular charge recombination. As a result, a PCE of 15.4% is achieved in the PHJ-OSCs. Importantly, the PHJ solar cells with donor dispersions exhibit better thermal stability than corresponding BHJ devices, which is related to the better film morphology robustness and less affected charge sweep-out during the thermal aging.

Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Zheng Z, Wang R, Yao H, Xie S, Zhang Y, Hou J, Zhou H, Tang Z. Nano Energy, 2018, 50: 169–175
Liu T, Huo L, Chandrabose S, Chen K, Han G, Qi F, Meng X, Xie D, Ma W, Yi Y, Hodgkiss JM, Liu F, Wang J, Yang C, Sun Y. Adv Mater, 2018, 30: 1707353
Che X, Li Y, Qu Y, Forrest SR. Nat Energy, 2018, 3: 422–427
Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098
Gao J, Wang J, An Q, Ma X, Hu Z, Xu C, Zhang X, Zhang F. Sci China Chem, 2020, 63: 83–91
Chen M, Zhang Z, Li W, Cai J, Yu J, Spooner ELK, Kilbride RC, Li D, Du B, Gurney RS, Liu D, Tang W, Lidzey DG, Wang T. Sci China Chem, 2019, 62: 1221–1229
Ma L, Xu Y, Zu Y, Liao Q, Xu B, An C, Zhang S, Hou J. Sci China Chem, 2020, 63: 21–27
Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791
Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB. Nature, 1995, 376: 498–500
Mornet S, Lambert O, Duguet E, Brisson A. Nano Lett, 2005, 5: 281–285
Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F. Science, 1992, 258: 1474–1476
Oh SJ, Kim J, Mativetsky JM, Loo YL, Kagan CR. ACS Appl Mater Interfaces, 2016, 8: 28743–28749
Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140–1151
Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872
Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515
Li C, Xie Y, Fan B, Han G, Yi Y, Sun Y. J Mater Chem C, 2018, 6: 4873–4877
Wang T, Pearson AJ, Lidzey DG. J Mater Chem C, 2013, 1: 7266–7293
Heeger AJ. Adv Mater, 2014, 26: 10–28
Zhao F, Wang C, Zhan X. Adv Energy Mater, 2018, 8: 1703147
Na JY, Kim M, Park YD. J Phys Chem C, 2017, 121: 13930–13937
Liu J, Han J, Liang Q, Xin J, Tang Y, Ma W, Yu X, Han Y. ACS Omega, 2018, 3: 7603–7612
Ma W, Yang C, Gong X, Lee K, Heeger AJ. Adv Funct Mater, 2005, 15: 1617–1622
Lee CK, Pao CW. J Phys Chem C, 2014, 118: 11224–11233
Gaspar H, Figueira F, Pereira L, Mendes A, Viana JC, Bernardo G. Materials, 2018, 11: 2560
Guerrero A, Garcia-Belmonte G. Nano-Micro Lett, 2016, 9: 10
Zhou K, Xin J, Ma W. ACS Energy Lett, 2019, 4: 447–455
Chang JH, Wang HF, Lin WC, Chiang KM, Chen KC, Huang WC, Huang ZY, Meng HF, Ho RM, Lin HW. J Mater Chem A, 2014, 2: 13398–13406
Wang Y, Zhan X. Adv Energy Mater, 2016, 6: 1600414
Li H, Wang J. Appl Phys Lett, 2012, 101: 263901
Lee KH, Schwenn PE, Smith ARG, Cavaye H, Shaw PE, James M, Krueger KB, Gentle IR, Meredith P, Burn PL. Adv Mater, 2011, 23: 766–770
Sun R, Guo J, Sun C, Wang T, Luo Z, Zhang Z, Jiao X, Tang W, Yang C, Li Y, Min J. Energy Environ Sci, 2019, 12: 384–395
Huang L, Jiang P, Zhang Y, Zhang L, Yu Z, He Q, Zhou W, Tan L, Chen Y. ACS Appl Mater Interfaces, 2019, 11: 26213–26221
Scharber MC, Sariciftci NS. Prog Polym Sci, 2013, 38: 1929–1940
Ye L, Xiong Y, Chen Z, Zhang Q, Fei Z, Henry R, Heeney M, O’Connor BT, You W, Ade H. Adv Mater, 2019, 31: 1808153
Xu Y, Yuan J, Liang S, Chen JD, Xia Y, Larson BW, Wang Y, Su GM, Zhang Y, Cui C, Wang M, Zhao H, Ma W. ACS Energy Lett, 2019, 4: 2277–2286
Zhou K, Wu Y, Liu Y, Zhou X, Zhang L, Ma W. ACS Energy Lett, 2019, 4: 1057–1064
Wang Y, Zhu Q, Naveed HB, Zhao H, Zhou K, Ma W. Adv Energy Mater, 2020, 10: 1903609
Zhao Y, Wang G, Wang Y, Xiao T, Adil MA, Lu G, Zhang J, Wei Z. Sol RRL, 2019, 3: 1800333
Coakley KM, McGehee MD. Chem Mater, 2004, 16: 4533–4542
Menke SM, Cheminal A, Conaghan P, Ran NA, Greehnam NC, Bazan GC, Nguyen TQ, Rao A, Friend RH. Nat Commun, 2018, 9: 277
Menke SM, Ran NA, Bazan GC, Friend RH. Joule, 2018, 2: 25–35
Nikolis VC, Benduhn J, Holzmueller F, Piersimoni F, Lau M, Zeika O, Neher D, Koerner C, Spoltore D, Vandewal K. Adv Energy Mater, 2017, 7: 1700855
Zhang J, Futscher MH, Lami V, Kosasih FU, Cho C, Gu Q, Sadhanala A, Pearson AJ, Kan B, Divitini G, Wan X, Credgington D, Greenham NC, Chen Y, Ducati C, Ehrler B, Vaynzof Y, Friend RH, Bakulin AA. Adv Energy Mater, 2019, 9: 1902145
Yan H, Tang Y, Sui X, Liu Y, Gao B, Liu X, Liu SF, Hou J, Ma W. ACS Energy Lett, 2019, 4: 1356–1363
Sun R, Wu Q, Guo J, Wang T, Wu Y, Qiu B, Luo Z, Yang W, Hu Z, Guo J, Shi M, Yang C, Huang F, Li Y, Min J. Joule, 2020, 4: 407–419
Qin Y, Zhang S, Xu Y, Ye L, Wu Y, Kong J, Xu B, Yao H, Ade H, Hou J. Adv Energy Mater, 2019, 9: 1901823
Zhang X, Zhang D, Zhou Q, Wang R, Zhou J, Wang J, Zhou H, Zhang Y. Nano Energy, 2019, 56: 494–501
Credgington D, Jamieson FC, Walker B, Nguyen TQ, Durrant JR. Adv Mater, 2012, 24: 2135–2141
Li C, Xia T, Song J, Fu H, Ryu HS, Weng K, Ye L, Woo HY, Sun Y. J Mater Chem A, 2019, 7: 1435–1441
Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J. Adv Funct Mater, 2004, 14: 38–44
Cowan SR, Roy A, Heeger AJ. Phys Rev B, 2010, 82: 245207
Kyaw AKK, Wang DH, Gupta V, Leong WL, Ke L, Bazan GC, Heeger AJ. ACS Nano, 2013, 7: 4569–4577
Proctor CM, Kuik M, Nguyen TQ. Prog Polym Sci, 2013, 38: 1941–1960
Zhang T, Zhao X, Yang D, Tian Y, Yang X. Adv Energy Mater, 2018, 8: 1701691
Zhang Q, Kan B, Liu F, Long G, Wan X, Chen X, Zuo Y, Ni W, Zhang H, Li M, Hu Z, Huang F, Cao Y, Liang Z, Zhang M, Russell TP, Chen Y. Nat Photon, 2014, 9: 35–41
He Z, Zhong C, Huang X, Wong WY, Wu H, Chen L, Su S, Cao Y. Adv Mater, 2011, 23: 4636–4643
Liu W, Zhang J, Zhou Z, Zhang D, Zhang Y, Xu S, Zhu X. Adv Mater, 2018, 30: 1800403
Maurano A, Shuttle CG, Hamilton R, Ballantyne AM, Nelson J, Zhang W, Heeney M, Durrant JR. J Phys Chem C, 2011, 115: 5947–5957
Zheng Z, Hu Q, Zhang S, Zhang D, Wang J, Xie S, Wang R, Qin Y, Li W, Hong L, Liang N, Liu F, Zhang Y, Wei Z, Tang Z, Russell TP, Hou J, Zhou H. Adv Mater, 2018, 30: 1801801
Mihailetchi VD, Koster LJA, Hummelen JC, Blom PWM. Phys Rev Lett, 2004, 93: 216601
Li Z, Gao F, Greenham NC, McNeill CR. Adv Funct Mater, 2011, 21: 1419–1431
Perdigón-Toro L, Zhang H, Markina A, Yuan J, Hosseini SM, Wolff CM, Zuo G, Stolterfoht M, Zou Y, Gao F, Andrienko D, Shoaee S, Neher D. Adv Mater, 2020, 32: 1906763
Karki A, Vollbrecht J, Dixon AL, Schopp N, Schrock M, Reddy GNM, Nguyen TQ. Adv Mater, 2019, 31: 1903868
Gledhill SE, Scott B, Gregg BA. J Mater Res, 2005, 20: 3167–3179
Manda PK, Ramaswamy S, Dutta S. IEEE Trans Electron Devices, 2018, 65: 184–190
Clymer DA, Matin MA. Application of Mott-Gurney law to model the current-voltage relationship of PPV/CN-PPV with a thin-metal anode buffer. In: Proceedings of SPIE—The International Society for Optical Engineering. Volum 5907. Optics and Photonics. San Diego, 2005
Stolterfoht M, Armin A, Philippa B, Neher D. J Phys Chem Lett, 2016, 7: 4716–4721
Loiudice A, Rizzo A, Latini G, Nobile C, de Giorgi M, Gigli G. Sol Energy Mater Sol Cells, 2012, 100: 147–152
Kim M, Lee J, Jo SB, Sin DH, Ko H, Lee H, Lee SG, Cho K. J Mater Chem A, 2016, 4: 15522–15535
Benninghoven A. Angew Chem Int Ed Engl, 1994, 33: 1023–1043
Cha H, Fish G, Luke J, Alraddadi A, Lee HH, Zhang W, Dong Y, Limbu S, Wadsworth A, Maria IP, Francas L, Sou HL, Du T, Kim JS, McLachlan MA, McCulloch I, Durrant JR. Adv Energy Mater, 2019, 9: 1901254
Ie Y, Morikawa K, Karakawa M, Kotadiya NB, Wetzelaer GJAH, Blom PWM, Aso Y. J Mater Chem A, 2017, 5: 19773–19780
Lin Y, Zhao F, Wu Y, Chen K, Xia Y, Li G, Prasad SKK, Zhu J, Huo L, Bin H, Zhang ZG, Guo X, Zhang M, Sun Y, Gao F, Wei Z, Ma W, Wang C, Hodgkiss J, Bo Z, Inganäs O, Li Y, Zhan X. Adv Mater, 2017, 29: 1604155
Cnops K, Rand BP, Cheyns D, Heremans P. Appl Phys Lett, 2012, 101: 143301
Barito A, Sykes ME, Bilby D, Amonoo J, Jin Y, Morris SE, Green PF, Kim J, Shtein M. J Appl Phys, 2013, 113: 203110
Shoaee S, Stolterfoht M, Neher D. Adv Energy Mater, 2018, 8: 1703355
Acknowledgements
This work was supported by the National Natural Science Foundation of China (21875012, 21674006, 21773045), the National Key Research and Development Program of China (2017YFA0206600), the Chinese Academy of Science (100 Top Young Scientists Program), and the program of “Academic Excellence Foundation of BUAA for PhD Students”.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Zhang, X., Li, Y., Zhang, D. et al. Molecular dispersion enhances photovoltaic efficiency and thermal stability in quasi-bilayer organic solar cells. Sci. China Chem. 64, 116–126 (2021). https://doi.org/10.1007/s11426-020-9837-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11426-020-9837-y