Skip to main content
Log in

Reducing energy loss via tuning energy levels of polymer acceptors for efficient all-polymer solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The open-circuit voltage (Voc) of all-polymer solar cells (all-PSCs) is typically lower than 0.9 V even for the most efficient ones. Large energy loss is the main reason for limiting Voc and efficiency of all-PSCs. Herein, through materials design using electron deficient building blocks based on bithiophene imides, the lowest unoccupied molecular orbital (LUMO) energy levels of polymer acceptors can be effectively tuned, which resulted in a reduced energy loss induced by charge generation and recombination loss due to the suppressed charge-transfer (CT) state absorption. Despite a negligible driving force, all-PSC based on the polymer donor and acceptor combination with well-aligned energy levels exhibited efficient charge transfer and achieved an external quantum efficiency over 10% while maintaining a large Voc of 1.02 V, leading to a 9.21% efficiency. Through various spectroscopy approaches, this work sheds light on the mechanism of energy loss in all-PSCs, which paves an avenue to achieving efficient all-PSCs with large Voc and drives the further development of all-PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee C, Lee S, Kim GU, Lee W, Kim BJ. Chem Rev, 2019, 119: 8028–8086

    CAS  PubMed  Google Scholar 

  2. Wu Q, Wang W, Wang T, Sun R, Guo J, Wu Y, Jiao X, Brabec CJ, Li Y, Min J. Sci China Chem, 2020, doi: https://doi.org/10.1007/s11426-020-9785-7

  3. Meng Y, Wu J, Guo X, Su W, Zhu L, Fang J, Zhang ZG, Liu F, Zhang M, Russell TP, Li Y. Sci China Chem, 2019, 62: 845–850

    CAS  Google Scholar 

  4. Li K, Xie R, Zhong W, Lin K, Ying L, Huang F, Cao Y. Sci China Chem, 2018, 61: 576–583

    CAS  Google Scholar 

  5. Dou C, Liu J, Wang L. Sci China Chem, 2017, 60: 450–459

    CAS  Google Scholar 

  6. Wang G, Melkonyan FS, Facchetti A, Marks TJ. Angew Chem Int Ed, 2019, 58: 4129–4142

    CAS  Google Scholar 

  7. Fan Q, Su W, Chen S, Kim W, Chen X, Lee B, Liu T, Méndez-Romero UA, Ma R, Yang T, Zhuang W, Li Y, Li Y, Kim TS, Hou L, Yang C, Yan H, Yu D, Wang E. Joule, 2020, 4: 658–672

    CAS  Google Scholar 

  8. Wang W, Wu Q, Sun R, Guo J, Wu Y, Shi M, Yang W, Li H, Min J. Joule, 2020, 4: 1070–1086

    CAS  Google Scholar 

  9. Jia T, Zhang J, Zhong W, Liang Y, Zhang K, Dong S, Ying L, Liu F, Wang X, Huang F, Cao Y. Nano Energy, 2020, 72: 104718

    CAS  Google Scholar 

  10. Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56: 13503–13507

    CAS  Google Scholar 

  11. Kolhe NB, Lee H, Kuzuhara D, Yoshimoto N, Koganezawa T, Jenekhe SA. Chem Mater, 2018, 30: 6540–6548

    CAS  Google Scholar 

  12. Kolhe NB, Tran DK, Lee H, Kuzuhara D, Yoshimoto N, Koganezawa T, Jenekhe SA. ACS Energy Lett, 2019, 4: 1162–1170

    CAS  Google Scholar 

  13. Zhang K, Xia R, Fan B, Liu X, Wang Z, Dong S, Yip HL, Ying L, Huang F, Cao Y. Adv Mater, 2018, 30: 1803166

    Google Scholar 

  14. Li Y, Meng H, Liu T, Xiao Y, Tang Z, Pang B, Li Y, Xiang Y, Zhang G, Lu X, Yu G, Yan H, Zhan C, Huang J, Yao J. Adv Mater, 2019, 31: 1904585

    CAS  Google Scholar 

  15. Xu X, Li Z, Zhang W, Meng X, Zou X, Di Carlo Rasi D, Ma W, Yartsev A, Andersson MR, Janssen RAJ, Wang E. Adv Energy Mater, 2018, 8: 1700908

    Google Scholar 

  16. Zhao R, Wang N, Yu Y, Liu J. Chem Mater, 2020, 32: 1308–1314

    CAS  Google Scholar 

  17. Xu X, Feng K, Yu L, Yan H, Li R, Peng Q. ACS Energy Lett, 2020, 5: 2434–2443

    CAS  Google Scholar 

  18. Luo Z, Bin H, Liu T, Zhang ZG, Yang Y, Zhong C, Qiu B, Li G, Gao W, Xie D, Wu K, Sun Y, Liu F, Li Y, Yang C. Adv Mater, 2018, 30: 1706124

    Google Scholar 

  19. Zhang B, An N, Wu H, Geng Y, Sun Y, Ma Z, Li W, Guo Q, Zhou E. Sci China Chem, 2020, doi: https://doi.org/10.1007/s11426-020-9777-1

  20. Kim T, Kim JH, Kang TE, Lee C, Kang H, Shin M, Wang C, Ma B, Jeong U, Kim TS, Kim BJ. Nat Commun, 2015, 6: 8547

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang J, Xiao B, Tang A, Li J, Wang X, Zhou E. Adv Mater, 2019, 31: 1804699

    CAS  Google Scholar 

  22. Zhu L, Zhong W, Qiu C, Lyu B, Zhou Z, Zhang M, Song J, Xu J, Wang J, Ali J, Feng W, Shi Z, Gu X, Ying L, Zhang Y, Liu F. Adv Mater, 2019, 31: 1902899

    CAS  Google Scholar 

  23. Zhou N, Facchetti A. Mater Today, 2018, 21: 377–390

    CAS  Google Scholar 

  24. Ding Z, Long X, Meng B, Bai K, Dou C, Liu J, Wang L. Nano Energy, 2017, 32: 216–224

    CAS  Google Scholar 

  25. Sun H, Guo X, Facchetti A. Chem, 2020, 6: 1310–1326

    CAS  Google Scholar 

  26. Kawashima K, Tamai Y, Ohkita H, Osaka I, Takimiya K. Nat Commun, 2015, 6: 1–9

    Google Scholar 

  27. Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515

    PubMed  PubMed Central  Google Scholar 

  28. Yuan J, Huang T, Cheng P, Zou Y, Zhang H, Yang JL, Chang SY, Zhang Z, Huang W, Wang R, Meng D, Gao F, Yang Y. Nat Commun, 2019, 10: 570

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuan J, Zhang C, Chen H, Zhu C, Cheung SH, Qiu B, Cai F, Wei Q, Liu W, Yin H, Zhang R, Zhang J, Liu Y, Zhang H, Liu W, Peng H, Yang J, Meng L, Gao F, So S, Li Y, Zou Y. Sci China Chem, 2020, doi: https://doi.org/10.1007/s11426-020-9799-4

  30. Vandewal K, Benduhn J, Nikolis VC. Sustain Energy Fuels, 2018, 2: 538–544

    CAS  Google Scholar 

  31. Tang A, Xiao B, Wang Y, Gao F, Tajima K, Bin H, Zhang Z-, Li Y, Wei Z, Zhou E. Adv Funct Mater, 2018, 28: 1704507

    Google Scholar 

  32. Li S, Zhan L, Sun C, Zhu H, Zhou G, Yang W, Shi M, Li CZ, Hou J, Li Y, Chen H. J Am Chem Soc, 2019, 141: 3073–3082

    CAS  PubMed  Google Scholar 

  33. Zhou K, Liu Y, Alotaibi A, Yuan J, Jiang C, Xin J, Liu X, Collins BA, Zhang F, Ma W. ACS Energy Lett, 2020, 5: 589–596

    CAS  Google Scholar 

  34. Saito M, Osaka I, Suda Y, Yoshida H, Takimiya K. Adv Mater, 2016, 28: 6921–6925

    CAS  PubMed  Google Scholar 

  35. Sun H, Liu B, Koh CW, Zhang Y, Chen J, Wang Y, Chen P, Tu B, Su M, Wang H, Tang Y, Shi Y, Woo HY, Guo X. Adv Funct Mater, 2019, 29: 1903970

    CAS  Google Scholar 

  36. Sun H, Liu B, Wang Z, Ling S, Zhang Y, Zhang G, Wang Y, Zhang M, Li B, Yang W, Wang J, Guo H, Liu F, Guo X. J Mater Chem C, 2020, 8: 4012–4020

    CAS  Google Scholar 

  37. Liu S, Firdaus Y, Thomas S, Kan Z, Cruciani F, Lopatin S, Bredas JL, Beaujuge PM. Angew Chem Int Ed, 2018, 57: 531–535

    CAS  Google Scholar 

  38. Sun H, Tang Y, Koh CW, Ling S, Wang R, Yang K, Yu J, Shi Y, Wang Y, Woo HY, Guo X. Adv Mater, 2019, 31: 1807220

    Google Scholar 

  39. Wang Y, Yan Z, Uddin MA, Zhou X, Yang K, Tang Y, Liu B, Shi Y, Sun H, Deng A, Dai J, Woo HY, Guo X. Sol RRL, 2019, 3: 1900107

    Google Scholar 

  40. Wang Y, Guo H, Ling S, Arrechea-Marcos I, Wang Y, López Navarrete JT, Ortiz RP, Guo X. Angew Chem Int Ed, 2017, 56: 9924–9929

    CAS  Google Scholar 

  41. Shi Y, Guo H, Huang J, Zhang X, Wu Z, Yang K, Zhang Y, Feng K, Woo HY, Ortiz RP, Zhou M, Guo X. Angew Chem Int Ed, 2020, doi: https://doi.org/10.1002/anie.202002292

  42. Hwang YJ, Earmme T, Courtright BAE, Eberle FN, Jenekhe SA. J Am Chem Soc, 2015, 137: 4424–4434

    CAS  PubMed  Google Scholar 

  43. Ding Z, Long X, Dou C, Liu J, Wang L. Chem Sci, 2016, 1: 6191–6202

    Google Scholar 

  44. Li Z, Xu X, Zhang W, Meng X, Ma W, Yartsev A, Inganäs O, Andersson MR, Janssen RAJ, Wang E. J Am Chem Soc, 2016, 138: 10935–10944

    CAS  PubMed  Google Scholar 

  45. Zhong Y, Causa’ M, Moore GJ, Krauspe P, Xiao B, Günther F, Kublitski J, Shivhare R, Benduhn J, BarOr E, Mukherjee S, Yallum KM, Réhault J, Mannsfeld SCB, Neher D, Richter LJ, DeLongchamp DM, Ortmann F, Vandewal K, Zhou E, Banerji N. Nat Commun, 2020, 11: 833

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun C, Qin S, Wang R, Chen S, Pan F, Qiu B, Shang Z, Meng L, Zhang C, Xiao M, Yang C, Li Y. J Am Chem Soc, 2020, 142: 1465–1414

    CAS  PubMed  Google Scholar 

  47. Liu T, Ma R, Luo Z, Guo Y, Zhang G, Xiao Y, Yang T, Chen Y, Li G, Yi Y, Lu X, Yan H, Tang B. Energy Environ Sci, 2020, 13: 2115–2123

    CAS  Google Scholar 

  48. Luo Z, Sun R, Zhong C, Liu T, Zhang G, Zou Y, Jiao X, Min J, Yang C. Sci China Chem, 2020, 63: 361–369

    CAS  Google Scholar 

  49. Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–531

    CAS  Google Scholar 

  50. Liao Q, Kang Q, Yang Y, An C, Xu B, Hou J. Adv Mater, 2020, 32: 1906551

    Google Scholar 

  51. Vandewal K, Tvingstedt K, Gadisa A, Inganäs O, Manca JV. Nat Mater, 2009, 8: 904–909

    CAS  PubMed  Google Scholar 

  52. Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1: 16089

    CAS  Google Scholar 

  53. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003

    CAS  Google Scholar 

  54. Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118: 3441–3501

    Google Scholar 

  55. Gao K, Kan Y, Chen X, Liu F, Kan B, Nian L, Wan X, Chen Y, Peng X, Russell TP, Cao Y, Jen AKY. Adv Mater, 2020, 32: 1906129

    CAS  Google Scholar 

  56. Qian D, Zheng Z, Yao H, Tress W, Hopper TR, Chen S, Li S, Liu J, Chen S, Zhang J, Liu XK, Gao B, Ouyang L, Jin Y, Pozina G, Buyanova IA, Chen WM, Inganäs O, Coropceanu V, Bredas JL, Yan H, Hou J, Zhang F, Bakulin AA, Gao F. Nat Mater, 2018, 11:103–109

    Google Scholar 

  57. Xiao Z, Yang S, Yang Z, Yang J, Yip HL, Zhang F, He F, Wang T, Wang J, Yuan Y, Yang H, Wang M, Ding L. Adv Mater, 2019, 31: 1804190

    Google Scholar 

  58. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098

    CAS  PubMed  Google Scholar 

  59. Eisner FD, Azzouzi M, Fei Z, Hou X, Anthopoulos TD, Dennis TJS, Heeney M, Nelson J. J Am Chem Soc, 2019, 141: 6362–6314

    CAS  PubMed  Google Scholar 

  60. Xie Y, Wang W, Huang W, Lin F, Li T, Liu S, Zhan X, Liang Y, Gao C, Wu H, Cao Y. Energy Environ Sci, 2019, 12: 3556–3566

    CAS  Google Scholar 

  61. Wang Y, Qian D, Cui Y, Zhang H, Hou J, Vandewal K, Kirchartz T, Gao F. Adv Energy Mater, 2018, 8: 1801352

    Google Scholar 

  62. Lee J, Tamilavan V, Rho KH, Keum S, Park KH, Han D, Jung YK, Yang C, Jin Y, Jang J-W, Jeong JH, Park SH. Adv EnergyMater, 2018, 8: 1102251

    Google Scholar 

  63. Ren G, Schlenker CW, Ahmed E, Subramaniyan S, Olthof S, Kahn A, Ginger DS, Jenekhe SA. Adv Funct Mater, 2013, 23: 1238–1249

    CAS  Google Scholar 

  64. Ma R, Liu T, Luo Z, Guo Q, Xiao Y, Chen Y, Li X, Luo S, Lu X, Zhang M, Li Y, Yan H. Sci China Chem, 2020, 63: 325–330

    CAS  Google Scholar 

  65. Zhang Y, Guo X, Guo B, Su W, Zhang M, Li Y. Adv Funct Mater, 2011, 27: 1603892

    Google Scholar 

  66. Gao W, Zhang M, Liu T, Ming R, An Q, Wu K, Xie D, Luo Z, Zhong C, Liu F, Zhang F, Yan H, Yang C. Adv Mater, 2018, 30: 1800052

    Google Scholar 

  67. An Q, Wang J, Zhang F. Nano Energy, 2019, 60: 168–114

    Google Scholar 

Download references

Acknowledgements

Guo X is grateful to the Shenzhen Science and Technology Innovation Commission (JCYJ20170817105905899, JCYJ20180504165709042). Sun H thanks the National Natural Science Foundation of China (21801124). Liu B thanks China Scholarship Council Fund (201906010074). This work was supported by the National Natural Science Foundation of China (21903017), and the Center for Computational Science and Engineering of Southern University of Science and Technology (SUSTech). We thank Ziang Wu and Han Young Woo at Korea University for performing GIWAXS measurements, thank Dr. Yinhua Yang at the Materials Characterization and Preparation Center, SUSTech for NMR measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xugang Guo.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Liu, B., Yu, J. et al. Reducing energy loss via tuning energy levels of polymer acceptors for efficient all-polymer solar cells. Sci. China Chem. 63, 1785–1792 (2020). https://doi.org/10.1007/s11426-020-9826-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9826-4

Keywords

Navigation