Skip to main content
Log in

Sinter-resistant and high-efficient Pt/CeO2/NiAl2O4/Al2O3@SiO2 model catalysts with “composite energy traps”

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The stability of nanosized catalysts at high temperature is still a challenging topic and is a crucial criterion to evaluate their suitability for industrial use. Currently, the strategy to improve the high-temperature stability of nano-sized catalysts is to restrict the migration of particles on the surface, which, however, lacks theoretical knowledge and directions. Herein, we reported a new approach that can effectively inhibit the migration and agglomeration of supported nanoparticles by fabrication of a model catalyst Pt/CeO2/NiAl2O4/Al2O3@SiO2. This catalyst is highly stable with the microstructure unchanged even after being aged at 1000 °C. Density functional theory calculations indicate that two types of confinement effects exist in the catalyst and their mechanisms were well explained from the viewpoint of “energy traps” which can also be applied to other supported catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bell AT. Science, 2003, 299: 1688–1691

    Article  CAS  Google Scholar 

  2. Valden, Lai, Goodman. Science, 1998, 281: 1647–1650

    Article  CAS  Google Scholar 

  3. Merkle R, Maier J. Z Anorg Allg Chem, 2005, 631: 1163–1166

    Article  CAS  Google Scholar 

  4. Levitas VI, Samani K. Nat Commun, 2011, 2: 284

    Article  CAS  Google Scholar 

  5. Hansen TW, Delariva AT, Challa SR, Datye AK. Acc Chem Res, 2013, 46: 1720–1730

    Article  CAS  Google Scholar 

  6. Yan W, Mahurin SM, Pan Z, Overbury SH, Dai S. J Am Chem Soc, 2005, 127: 10480–10481

    Article  CAS  Google Scholar 

  7. Zhou HP, Wu HS, Shen J, Yin AX, Sun LD, Yan CH. J Am Chem Soc, 2010, 132: 4998–4999

    Article  CAS  Google Scholar 

  8. Zhan W, He Q, Liu X, Guo Y, Wang Y, Wang L, Guo Y, Borisevich AY, Zhang J, Lu G, Dai S. J Am Chem Soc, 2016, 138: 16130–16139

    Article  CAS  Google Scholar 

  9. Tang H, Liu F, Wei J, Qiao B, Zhao K, Su Y, Jin C, Li L, Liu JJ, Wang J, Zhang T. Angew Chem Int Ed, 2016, 55: 10606–10611

    Article  CAS  Google Scholar 

  10. Cao A, Veser G. Nat Mater, 2010, 9: 75–81

    Article  CAS  Google Scholar 

  11. Liu H, Zhang L, Wang N, Su DS. Angew Chem Int Ed, 2014, 54: 12634–12638

    Google Scholar 

  12. Lee I, Joo JB, Yin Y, Zaera F. Angew Chem, 2011, 123: 10390–10393

    Article  Google Scholar 

  13. Cargnello M, Delgado Jaén JJ, Hernández Garrido JC, Bakhmutsky K, Montini T, Calvino Gámez JJ, Gorte RJ, Fornasiero P. Science, 2012, 337: 713–717

    Article  CAS  Google Scholar 

  14. Joo SH, Park JY, Tsung CK, Yamada Y, Yang P, Somorjai GA. Nat Mater, 2009, 8: 126–131

    Article  CAS  Google Scholar 

  15. Guo X, Fang G, Li G, Ma H, Fan H, Yu L, Ma C, Wu X, Deng D, Wei M, Tan D, Si R, Zhang S, Li J, Sun L, Tang Z, Pan X, Bao X. Science, 2014, 344: 616–619

    Article  CAS  Google Scholar 

  16. Onn TM, Monai M, Dai S, Fonda E, Montini T, Pan X, Graham GW, Fornasiero P, Gorte RJ. J Am Chem Soc, 2018, 140: 4841–4848

    Article  CAS  Google Scholar 

  17. Zhang D, Niu F, Li H, Shi L, Fang J. Powder Tech, 2011, 207: 35–41

    Article  CAS  Google Scholar 

  18. Wang Z, Wang Q, Liao YC, Shen GL, Liu HD, Chen YF. J Nanopart Res, 2011, 13: 4969–4978

    Article  CAS  Google Scholar 

  19. Liu Y, Wang S, Sun T, Gao D, Zhang C, Wang S. Appl Catal B-Environ, 2012, 119: 321–328

    Article  CAS  Google Scholar 

  20. Pan X, Zhang Y, Zhang B, Miao Z, Wu T, Yang X. Chem Res Chin Univ, 2013, 29: 952–955

    Article  CAS  Google Scholar 

  21. Zhao K, Qiao B, Wang J, Zhang Y, Zhang T. Chem Commun, 2011, 47: 1779–1781

    Article  CAS  Google Scholar 

  22. Matsubu JC, Zhang S, DeRita L, Marinkovic NS, Chen JG, Graham GW, Pan X, Christopher P. Nat Chem, 2017, 9: 120–127

    Article  CAS  Google Scholar 

  23. Jones J, Xiong H, DeLaRiva AT, Peterson EJ, Pham H, Challa SR, Qi G, Oh S, Wiebenga MH, Pereira Hernández XI, Wang Y, Datye AK. Science, 2016, 353: 150–154

    Article  CAS  Google Scholar 

  24. Wu T, Pan X, Zhang Y, Miao Z, Zhang B, Li J, Yang X. J Phys Chem Lett, 2014, 5: 2479–2483

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFC0204301), the National Natural Science Foundation of China (21872133, 21273221) and Youth Innovation Promotion Association of Chinese Academy of Sciences (2018263).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yibo Zhang or Xiangguang Yang.

Supporting Information online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, K., Sun, L. et al. Sinter-resistant and high-efficient Pt/CeO2/NiAl2O4/Al2O3@SiO2 model catalysts with “composite energy traps”. Sci. China Chem. 63, 519–525 (2020). https://doi.org/10.1007/s11426-019-9678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9678-5

Keywords

Navigation