Skip to main content
Log in

11.2% Efficiency all-polymer solar cells with high open-circuit voltage

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Herein, we fabricated all-polymer solar cells (all-PSCs) based on a fluorinated wide-bandgap p-type conjugated polymer PM6 as the donor, and a narrow bandgap n-type conjugated polymer PZ1 as the acceptor. In addition to the complementary absorption and matching energy levels, the optimized blend films possess high cystallinity, predominantly face-on stacking, and a suitable phase separated morphology. With this active layer, the devices exhibited a high Voc of 0.96 V, a superior Jsc of 17.1 mA cm-2, a fine fill factor (FF) of 68.2%, and thus an excellent power conversion efficiency (PCE) of 11.2%, which is the highest value reported to date for single-junction all-PSCs. Furthermore, the devices showed good storage stability. After 80 d of storage in the N2-filled glovebox, the PCE still remained over 90% of the original value. Large-area devices (1.1 cm2) also demonstrated an outstanding performance with a PCE of 9.2%, among the highest values for the reported large-area all-PSCs. These results indicate that the PM6:PZ1 blend is a promising candidate for scale-up production of large area high-performance all-PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen S, Jung S, Cho HJ, Kim NH, Jung S, Xu J, Oh J, Cho Y, Kim H, Lee B, An Y, Zhang C, Xiao M, Ki H, Zhang ZG, Kim JY, Li Y, Park H, Yang C. Angew Chem Int Ed, 2018, 57: 13277–13282

    Article  CAS  Google Scholar 

  2. Gao L, Zhang ZG, Xue L, Min J, Zhang J, Wei Z, Li Y. Adv Mater, 2016, 28: 1884–1890

    Article  CAS  PubMed  Google Scholar 

  3. Kim T, Kim JH, Kang TE, Lee C, Kang H, Shin M, Wang C, Ma B, Jeong U, Kim TS, Kim BJ. Nat Commun, 2015, 6: 8547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Su W, Meng Y, Guo X, Fan Q, Zhang M, Jiang Y, Xu Z, Dai Y, Xie B, Liu F, Zhang M, Russell TP, Li Y. J Mater Chem A, 2018, 6: 16403–16411

    Article  CAS  Google Scholar 

  5. Liu X, Zhang C, Duan C, Li M, Hu Z, Wang J, Liu F, Li N, Brabec CJ, Janssen RAJ, Bazan GC, Huang F, Cao Y. J Am Chem Soc, 2018, 140: 8934–8943

    Article  CAS  PubMed  Google Scholar 

  6. Fan B, Ying L, Wang Z, He B, Jiang XF, Huang F, Cao Y. Energy Environ Sci, 2017, 10: 1243–1251

    Article  CAS  Google Scholar 

  7. Wang G, Eastham ND, Aldrich TJ, Ma B, Manley EF, Chen Z, Chen LX, de la Cruz MO, Chang RPH, Melkonyan FS, Facchetti A, Marks TJ. Adv Energy Mater, 2018, 8: 1702173

    Article  CAS  Google Scholar 

  8. Song W, Fan X, Xu B, Yan F, Cui H, Wei Q, Peng R, Hong L, Huang J, Ge Z. Adv Mater, 2018, 30: 1800075

    Article  CAS  Google Scholar 

  9. Fan B, Ying L, Zhu P, Pan F, Liu F, Chen J, Huang F, Cao Y. Adv Mater, 2017, 29: 1703906

    Article  CAS  Google Scholar 

  10. Zhang K, Xia R, Fan B, Liu X, Wang Z, Dong S, Yip HL, Ying L, Huang F, Cao Y. Adv Mater, 2018, 30: 1803166

    Article  CAS  Google Scholar 

  11. Li Z, Ying L, Xie R, Zhu P, Li N, Zhong W, Huang F, Cao Y. Nano Energy, 2018, 51: 434–441

    Article  CAS  Google Scholar 

  12. Li Z, Ying L, Zhu P, Zhong W, Li N, Liu F, Huang F, Cao Y. Energy Environ Sci, 2019, 12: 157–163

    Article  CAS  Google Scholar 

  13. Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537

    Article  CAS  Google Scholar 

  14. Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128

    Article  CAS  PubMed  Google Scholar 

  15. Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868

    Article  CAS  Google Scholar 

  16. Fan Q, Zhu Q, Xu Z, Su W, Chen J, Wu J, Guo X, Ma W, Zhang M, Li Y. Nano Energy, 2018, 48: 413–420

    Article  CAS  Google Scholar 

  17. Kang H, Lee W, Oh J, Kim T, Lee C, Kim BJ. Acc Chem Res, 2016, 49: 2424–2434

    Article  CAS  PubMed  Google Scholar 

  18. Xu X, Yu T, Bi Z, Ma W, Li Y, Peng Q. Adv Mater, 2018, 30: 1703973

    Article  CAS  Google Scholar 

  19. Yuan Y, Liu C, Byles BW, Yao W, Song B, Cheng M, Huang Z, Amine K, Pomerantseva E, Shahbazian-Yassar R, Lu J. Joule, 2019, 3: 471–484

    Article  CAS  Google Scholar 

  20. Yang J, Xiao B, Tang A, Li J, Wang X, Zhou E. Adv Mater, 2018, 4: 1804699

    Article  CAS  Google Scholar 

  21. Hwang YJ, Earmme T, Courtright BAE, Eberle FN, Jenekhe SA. J Am Chem Soc, 2015, 137: 4424–4434

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Lv L, Li L, Chen Y, Zhang K, Chen H, Dong H, Huang J, Shen G, Yang Z, Huang H. Adv Funct Mater, 2016, 26: 6306–6315

    Article  CAS  Google Scholar 

  23. Earmme T, Hwang YJ, Murari NM, Subramaniyan S, Jenekhe SA. J Am Chem Soc, 2013, 135: 14960–14963

    Article  CAS  PubMed  Google Scholar 

  24. Zhou E, Cong J, Hashimoto K, Tajima K. Adv Mater, 2013, 25: 6991–6996

    Article  CAS  PubMed  Google Scholar 

  25. Ye L, Jiao X, Zhou M, Zhang S, Yao H, Zhao W, Xia A, Ade H, Hou J. Adv Mater, 2015, 27: 6046–6054

    Article  CAS  PubMed  Google Scholar 

  26. Kolhe NB, Lee H, Kuzuhara D, Yoshimoto N, Koganezawa T, Jenekhe SA. Chem Mater, 2018, 30: 6540–6548

    Article  CAS  Google Scholar 

  27. Dou C, Ding Z, Zhang Z, Xie Z, Liu J, Wang L. Angew Chem Int Ed, 2015, 54: 3648–3652

    Article  CAS  Google Scholar 

  28. Long X, Ding Z, Dou C, Zhang J, Liu J, Wang L. Adv Mater, 2016, 28: 6504–6508

    Article  CAS  PubMed  Google Scholar 

  29. Min Y, Dou C, Tian H, Geng Y, Liu J, Wang L. Angew Chem Int Ed, 2018, 57: 2000–2004

    Article  CAS  Google Scholar 

  30. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti A. Nature, 2009, 457: 679–686

    Article  CAS  PubMed  Google Scholar 

  31. Yuan J, Ford MJ, Xu Y, Zhang Y, Bazan GC, Ma W. Adv Energy Mater, 2018, 8: 1703291

    Article  CAS  Google Scholar 

  32. Liu X, Zou Y, Wang HQ, Wang L, Fang J, Yang C. ACS Appl Mater Interfaces, 2018, 10: 38302–38309

    Article  CAS  PubMed  Google Scholar 

  33. Chen D, Yao J, Chen L, Yin J, Lv R, Huang B, Liu S, Zhang ZG, Yang C, Chen Y, Li Y. Angew Chem Int Ed, 2018, 57: 4580–4584

    Article  CAS  Google Scholar 

  34. Guo Y, Li Y, Awartani O, Han H, Zhao J, Ade H, Yan H, Zhao D. Adv Mater, 2017, 29: 1700309

    Article  CAS  Google Scholar 

  35. Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56: 13503–13507

    Article  CAS  Google Scholar 

  36. Deshmukh KD, Qin T, Gallaher JK, Liu ACY, Gann E, O’Donnell K, Thomsen L, Hodgkiss JM, Watkins SE, McNeill CR. Energy Environ Sci, 2015, 8: 332–342

    Article  CAS  Google Scholar 

  37. Chen S, An Y, Dutta GK, Kim Y, Zhang ZG, Li Y, Yang C. Adv Funct Mater, 2017, 27: 1603564

    Article  CAS  Google Scholar 

  38. Oh J, Kranthiraja K, Lee C, Gunasekar K, Kim S, Ma B, Kim BJ, Jin SH. Adv Mater, 2016, 28: 10016–10023

    Article  CAS  PubMed  Google Scholar 

  39. Jung JW, Jo JW, Chueh CC, Liu F, Jo WH, Russell TP, Jen AKY. Adv Mater, 2015, 27: 3310–3317

    Article  CAS  PubMed  Google Scholar 

  40. Deshmukh KD, Matsidik R, Prasad SKK, Chandrasekaran N, Welford A, Connal LA, Liu ACY, Gann E, Thomsen L, Kabra D, Hodgkiss JM, Sommer M, McNeill CR. ACS Appl Mater Interfaces, 2018, 10: 955–969

    Article  CAS  PubMed  Google Scholar 

  41. Zhang M, Guo X, Ma W, Ade H, Hou J. Adv Mater, 2015, 27: 4655–4660

    Article  CAS  PubMed  Google Scholar 

  42. Benten H, Nishida T, Mori D, Xu H, Ohkita H, Ito S. Energy Environ Sci, 2016, 9: 135–140

    Article  CAS  Google Scholar 

  43. Guo B, Li W, Guo X, Meng X, Ma W, Zhang M, Li Y. Adv Mater, 2017, 29: 1702291

    Article  CAS  Google Scholar 

  44. Su W, Fan Q, Guo X, Guo B, Li W, Zhang Y, Zhang M, Li Y. J Mater Chem A, 2016, 4: 14752–14760

    Article  CAS  Google Scholar 

  45. Jiang W, Yu R, Liu Z, Peng R, Mi D, Hong L, Wei Q, Hou J, Kuang Y, Ge Z. Adv Mater, 2018, 30: 1703005

    Article  CAS  Google Scholar 

  46. Liu F, Gu Y, Shen X, Ferdous S, Wang HW, Russell TP. Prog Polymer Sci, 2013, 38: 1990–2052

    Article  CAS  Google Scholar 

  47. Gann E, Young AT, Collins BA, Yan H, Nasiatka J, Padmore HA, Ade H, Hexemer A, Wang C. Rev Sci Instrum, 2012, 83: 045110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51773142, 51573120, 21734009, 91633301). T. P. Russell was supported by the U.S. Office of Naval Research (N00014-15-1-2244). Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, Molecular Foundry, and National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maojie Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Wu, J., Guo, X. et al. 11.2% Efficiency all-polymer solar cells with high open-circuit voltage. Sci. China Chem. 62, 845–850 (2019). https://doi.org/10.1007/s11426-019-9466-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-019-9466-6

Keywords

Navigation