Skip to main content
Log in

Injectable dual glucose-responsive hydrogel-micelle composite for mimicking physiological basal and prandial insulin delivery

  • Articles
  • Special Issue: Dedicated to the 100th Anniversary of Nankai University
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

For type 1 and advanced type 2 diabetic patients, insulin replacement therapy with simulating on-demand prandial and basal insulin secretion is the best option for optimal glycemic control. However, there is no insulin delivery system yet could mimic both controlled basal insulin release and rapid prandial insulin release in response to real-time blood glucose changes. Here we reported an artificial insulin delivery system, mimicking physiological basal and prandial insulin secretion, to achieve real-time glycemic control and reduce risk of hypoglycemia. A phenylboronic acid (PBA)/galactosyl-based glucose-responsive insulin delivery system was prepared with insulin-loaded micelles embedded in hydrogel matrix. At the hyperglycemic state, both the hydrogel and micelles could swell and achieve rapid glucose-responsive release of insulin, mimicking prandial insulin secretion. When the glucose level returned to the normal state, only the micelles partially responded to glucose and still released insulin gradually. The hydrogel with increased crosslinking density could slow down the diffusion speed of insulin inside, resulting in controlled release of insulin and simulating physiological basal insulin secretion. This hydrogel-micelle composite insulin delivery system could quickly reduce the blood glucose level in a mouse model of type 1 diabetes, and maintain normal blood glucose level without hypoglycemia for about 24 h. This kind of glucose-responsive hydrogel-micelle composite may be a promising candidate for delivery of insulin in the treatment of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hermansen K, Fontaine P, Kukolja KK, Peterkova V, Leth G, Gall MA. Diabetologia, 2004, 47: 622–629

    Article  CAS  PubMed  Google Scholar 

  2. Veiseh O, Tang BC, Whitehead KA, Anderson DG, Langer R. Nat Rev Drug Discov, 2015, 14: 45–57

    Article  CAS  PubMed  Google Scholar 

  3. Porcellati F, Rossetti P, Busciantella NR, Marzotti S, Lucidi P, Luzio S, Owens DR, Bolli GB, Fanelli CG. Diabetes Care, 2007, 30: 2447–2452

    Article  CAS  PubMed  Google Scholar 

  4. Fleury-Milfort E. Adv Nurse Pract, 2008, 16: 32–39

    PubMed  Google Scholar 

  5. Mo R, Jiang T, Di J, Tai W, Gu Z. Chem Soc Rev, 2014, 43: 3595–3629

    Article  CAS  PubMed  Google Scholar 

  6. Grunberger G. Diabetes Obes Metab, 2013, 151: 1–5

    Article  CAS  Google Scholar 

  7. Bratlie KM, York RL, Invernale MA, Langer R, Anderson DG. Adv Healthc Mater, 2012, 1: 267–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiao Y, Sun H, Du J. J Am Chem Soc, 2017, 139: 7640–7647

    Article  CAS  PubMed  Google Scholar 

  9. Ma R, Shi L. Polym Chem, 2014, 5: 1503–1518

    Article  CAS  Google Scholar 

  10. Russell SJ, El-Khatib FH, Sinha M, Magyar KL, McKeon K, Goergen LG, Balliro C, Hillard MA, Nathan DM, Damiano ER. New Engl J Med, 2014, 371: 313–325

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Wang J, Yu J, Wen D, Kahkoska AR, Lu Y, Zhang X, Buse JB, Gu Z. Small, 2018, 14: 1704181

    Article  CAS  Google Scholar 

  12. Lapeyre V, Gosse I, Chevreux S, Ravaine V. Biomacromolecules, 2006, 7: 3356–3363

    Article  CAS  PubMed  Google Scholar 

  13. Ma R, Yang H, Li Z, Liu G, Sun X, Liu X, An Y, Shi L. Biomacromolecules, 2012, 13: 3409–3417

    Article  CAS  PubMed  Google Scholar 

  14. Ravaine V, Ancla C, Catargi B. J Control Release, 2008, 132: 2–11

    Article  CAS  PubMed  Google Scholar 

  15. Shiino D, Murata Y, Kataoka K, Koyama Y, Yokoyama M, Okano T, Sakurai Y. Biomaterials, 1994, 15: 121–128

    Article  CAS  PubMed  Google Scholar 

  16. Brooks WLA, Sumerlin BS. Chem Rev, 2016, 116: 1375–1397

    Article  CAS  PubMed  Google Scholar 

  17. Miyata T, Uragami T, Nakamae K. Adv Drug Deliver Rev, 2002, 54: 79–98

    Article  CAS  Google Scholar 

  18. Matsumoto A, Ishii T, Nishida J, Matsumoto H, Kataoka K, Miyahara Y. Angew Chem Int Ed, 2012, 51: 2124–2128

    Article  CAS  Google Scholar 

  19. Chou DHC, Webber MJ, Tang BC, Lin AB, Thapa LS, Deng D, Truong JV, Cortinas AB, Langer R, Anderson DG. Proc Natl Acad Sci USA, 2015, 112: 2401–2406

    Article  CAS  PubMed  Google Scholar 

  20. Wang D, Liu T, Yin J, Liu S. Macromolecules, 2011, 44: 2282–2290

    Article  CAS  Google Scholar 

  21. Liu P, Luo Q, Guan Y, Zhang Y. Polymer, 2010, 51: 2668–2675

    Article  CAS  Google Scholar 

  22. Zhao L, Xiao C, Ding J, Zhuang X, Gai G, Wang L, Chen X. Polym Chem, 2015, 6: 3807–3815

    Article  CAS  Google Scholar 

  23. Kikuchi A, Suzuki K, Okabayashi O, Hoshino H, Kataoka K, Sakurai Y, Okano T. Anal Chem, 1996, 68: 823–828

    Article  CAS  PubMed  Google Scholar 

  24. Kitano S, Kataoka K, Koyama Y, Okano T, Sakurai Y. Makromol Chem Rapid Commun, 1991, 12: 227–233

    Article  CAS  Google Scholar 

  25. Yang T, Ji R, Deng XX, Du FS, Li ZC. Soft Matter, 2014, 10: 2671–2678

    Article  CAS  PubMed  Google Scholar 

  26. Yesilyurt V, Webber MJ, Appel EA, Godwin C, Langer R, Anderson DG. Adv Mater, 2016, 28: 86–91

    Article  CAS  PubMed  Google Scholar 

  27. Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y. J Am Chem Soc, 1998, 120: 12694–12695

    Article  CAS  Google Scholar 

  28. Wu W, Mitra N, Yan ECY, Zhou S. ACS Nano, 2010, 4: 4831–4839

    Article  CAS  PubMed  Google Scholar 

  29. Liu G, Ma R, Ren J, Li Z, Zhang H, Zhang Z, An Y, Shi L. Soft Matter, 2013, 9: 1636–1644

    Article  CAS  Google Scholar 

  30. Yang H, Sun X, Liu G, Ma R, Li Z, An Y, Shi L. Soft Matter, 2013, 9: 8589–8599

    Article  CAS  Google Scholar 

  31. Yang H, Ma R, Yue J, Li C, Liu Y, An Y, Shi L. Polym Chem, 2015, 6: 3837–3846

    Article  CAS  Google Scholar 

  32. Yang H, Zhang C, Li C, Liu Y, An Y, Ma R, Shi L. Biomacromolecules, 2015, 16: 1372–1381

    Article  CAS  PubMed  Google Scholar 

  33. Schexnailder P, Schmidt G. Colloid Polym Sci, 2009, 287: 1–11

    Article  CAS  Google Scholar 

  34. Guo Q, Wu Z, Zhang X, Sun L, Li C. Soft Matter, 2014, 10: 911–920

    Article  CAS  PubMed  Google Scholar 

  35. Guo Q, Zhang T, An J, Wu Z, Zhao Y, Dai X, Zhang X, Li C. Biomacromolecules, 2015, 16: 3345–3356

    Article  CAS  PubMed  Google Scholar 

  36. Tyrrell ZL, Shen Y, Radosz M. Prog Polymer Sci, 2010, 35: 1128–1143

    Article  CAS  Google Scholar 

  37. Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. ACS Nano, 2015, 9: 4686–4697

    Article  CAS  PubMed  Google Scholar 

  38. Guo Z, Shin I, Yoon J. Chem Commun, 2012, 48: 5956–5967

    Article  CAS  Google Scholar 

  39. Ding J, Chen J, Li D, Xiao C, Zhang J, He C, Zhuang X, Chen X. J Mater Chem B, 2013, 1: 69–81

    Article  CAS  Google Scholar 

  40. Brulc B, Žagar E, Gadzinowski M, Słomkowski S, Žigon M. Macromol Chem Phys, 2011, 212: 550–562

    Article  CAS  Google Scholar 

  41. Yao Y, Wang X, Tan T, Yang J. Soft Matter, 2011, 7: 7948–7951

    Article  CAS  Google Scholar 

  42. Thabit H, Hovorka R. Endocrin Metab Clin, 2012, 41: 105–117

    Article  CAS  Google Scholar 

  43. Zhang W, Shi L, An Y, Gao L, He B. J Phys Chem B, 2004, 108: 200–204

    Article  CAS  Google Scholar 

  44. Ma R, Wang B, Liu X, An Y, Li Y, He Z, Shi L. Langmuir, 2007, 23: 7498–7504

    Article  CAS  PubMed  Google Scholar 

  45. Wu C, Siddiq M, Woo KF. Macromolecules, 1995, 28: 4914–4919

    Article  CAS  Google Scholar 

  46. Elbert DL, Pratt AB, Lutolf MP, Halstenberg S, Hubbell JA. J Control Release, 2001, 76: 11–25

    Article  CAS  PubMed  Google Scholar 

  47. Guan Y, Zhang Y. Chem Soc Rev, 2013, 42: 8106–8121

    Article  CAS  PubMed  Google Scholar 

  48. Yan J, Springsteen G, Deeter S, Wang B. Tetrahedron, 2004, 60: 11205–11209

    Article  CAS  Google Scholar 

  49. Payyappilly S, Dhara S, Chattopadhyay S. J Biomed Mater Res, 2014, 102: 1500–1509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51603105, 51773099, 51390483, 91527306, 21620102005) and the Program for Changjiang Scholars and Innovative Research Team in University (IRT1257).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rujiang Ma or Linqi Shi.

Electronic supplementary material

11426_2018_9419_MOESM1_ESM.pdf

Injectable dual glucose-responsive hydrogel-micelle composite for mimicking physiological basal and prandial insulin delivery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Wu, G., Liu, Y. et al. Injectable dual glucose-responsive hydrogel-micelle composite for mimicking physiological basal and prandial insulin delivery. Sci. China Chem. 62, 637–648 (2019). https://doi.org/10.1007/s11426-018-9419-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9419-3

Keywords

Navigation