Skip to main content
Log in

Towards single-molecule optoelectronic devices

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Benefiting from the development of molecular electronics and molecular plasmonics, the interplay of light and electronic transport in molecular junctions has attracted growing interest among researchers in both fields, leading to a new research direction of “single-molecule optoelectronics”. Here, we review the latest developments of photo-modulated charge transport, electroluminescence and Raman spectroscopy from single-molecule junctions, and suggest future directions for single-molecule optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Feynman RP. There’s plenty of room at the bottom. A Transcript Talk at the Annual Meeting of the American Physical Society at Caltech. Engineering and Science, Caltech, 1960, 23: 22–36. https://doi.org/calteches.library.caltech.edu/1976

    Google Scholar 

  2. Agraït N. Phys Rep, 2003, 377: 81–279

    Article  CAS  Google Scholar 

  3. Lambert CJ. Chem Soc Rev, 2015, 44: 875–888

    Article  CAS  PubMed  Google Scholar 

  4. Lovat G, Choi B, Paley DW, Steigerwald ML, Venkataraman L, Roy X. Nat Nanotech, 2017, 12: 1050–1054

    Article  CAS  Google Scholar 

  5. Galperin M, Nitzan A. Phys Chem Chem Phys, 2012, 14: 9421

    Article  CAS  PubMed  Google Scholar 

  6. Aradhya SV, Venkataraman L. Nat Nanotech, 2013, 8: 399–410

    Article  CAS  Google Scholar 

  7. Xiang D, Wang X, Jia C, Lee T, Guo X. Chem Rev, 2016, 116: 4318–4440

    Article  CAS  PubMed  Google Scholar 

  8. Zhao Z, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C, Ni L, Chen X, Wang M, Li Z, Lee T, Xiang D. Small, 2018, 14: 1703815

    Article  CAS  Google Scholar 

  9. Huang C, Rudnev AV, Hong W, Wandlowski T. Chem Soc Rev, 2015, 44: 889–901

    Article  CAS  PubMed  Google Scholar 

  10. Guldi DM, Nishihara H, Venkataraman L. Chem Soc Rev, 2015, 44: 842–844

    Article  CAS  PubMed  Google Scholar 

  11. Sonntag MD, Klingsporn JM, Zrimsek AB, Sharma B, Ruvuna LK, van Duyne RP. Chem Soc Rev, 2014, 43: 1230–1247

    Article  CAS  PubMed  Google Scholar 

  12. van Duyne RP. Science, 2004, 306: 985–986

    Article  PubMed  Google Scholar 

  13. Brongersma ML, Halas NJ, Nordlander P. Nat Nanotech, 2015, 10: 25–34

    Article  CAS  Google Scholar 

  14. Sobhani A, Knight MW, Wang Y, Zheng B, King NS, Brown LV, Fang Z, Nordlander P, Halas NJ. Nat Commun, 2013, 4: 1643

    Article  CAS  Google Scholar 

  15. Giugni A, Torre B, Toma A, Francardi M, Malerba M, Alabastri A, Proietti Zaccaria R, Stockman MI, Di Fabrizio E. Nat Nanotech, 2013, 8: 845–852

    Article  CAS  Google Scholar 

  16. Vardi Y, Cohen-Hoshen E, Shalem G, Bar-Joseph I. Nano Lett, 2016, 16: 748–752

    Article  CAS  PubMed  Google Scholar 

  17. Kern J, Kullock R, Prangsma J, Emmerling M, Kamp M, Hecht B. Nat Photon, 2015, 9: 582–586

    Article  CAS  Google Scholar 

  18. Wang T, Nijhuis CA. Appl Mater Today, 2016, 3: 73–86

    Article  Google Scholar 

  19. van Ruitenbeek J. Nature, 2001, 410: 424–425

    Article  PubMed  Google Scholar 

  20. Natelson D, Li Y, Herzog JB. Phys Chem Chem Phys, 2013, 15: 5262–5275

    Article  CAS  PubMed  Google Scholar 

  21. Shamai T, Selzer Y. Chem Soc Rev, 2011, 40: 2293

    Article  CAS  PubMed  Google Scholar 

  22. Liu Z, Ren S, Guo X. Top Curr Chem (Z), 2017, 375: 56

    Article  CAS  Google Scholar 

  23. Schirm C, Matt M, Pauly F, Cuevas JC, Nielaba P, Scheer E. Nat Nanotech, 2013, 8: 645–648

    Article  CAS  Google Scholar 

  24. Sha R, Xiang L, Liu C, Balaeff A, Zhang Y, Zhang P, Li Y, Beratan DN, Tao N, Seeman NC. Nat Nanotech, 2018, 13: 316–321

    Article  CAS  Google Scholar 

  25. Cortés E. Adv Opt Mater, 2017, 5: 1700191

    Article  CAS  Google Scholar 

  26. Zrimsek AB, Chiang N, Mattei M, Zaleski S, McAnally MO, Chapman CT, Henry AI, Schatz GC, van Duyne RP. Chem Rev, 2017, 117: 7583–7613

    Article  CAS  PubMed  Google Scholar 

  27. Natelson D, Evans CI, Zolotavin P. Photovoltages and hot electrons in plasmonic nanogaps. In: Proceedings Volume 10540, Quantum Sensing and Nano Electronics and Photonics XV. San Francisco, 2018. 9

  28. Tien PK, Gordon JP. Phys Rev, 1963, 129: 647–651

    Article  Google Scholar 

  29. Reddy P, Jang SY, Segalman RA, Majumdar A. Science, 2007, 315: 1568–1571

    Article  CAS  PubMed  Google Scholar 

  30. Zhou J, Wang K, Xu B, Dubi Y. J Am Chem Soc, 2018, 140: 70–73

    Article  CAS  PubMed  Google Scholar 

  31. Vadai M, Nachman N, Ben-Zion M, Bürkle M, Pauly F, Cuevas JC, Selzer Y. J Phys Chem Lett, 2013, 4: 2811–2816

    Article  CAS  Google Scholar 

  32. Tebikachew BE, Li HB, Pirrotta A, Börjesson K, Solomon GC, Hihath J, Moth-Poulsen K. J Phys Chem C, 2017, 121: 7094–7100

    Article  CAS  Google Scholar 

  33. Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu DH, Tian H, Ratner MA, Xu HQ, Nitzan A, Guo X. Science, 2016, 352: 1443–1445

    Article  CAS  PubMed  Google Scholar 

  34. Huang C, Jevric M, Borges A, Olsen ST, Hamill JM, Zheng JT, Yang Y, Rudnev A, Baghernejad M, Broekmann P, Petersen AU, Wandlowski T, Mikkelsen KV, Solomon GC, Brøndsted Nielsen M, Hong W. Nat Commun, 2017, 8: 15436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Galperin M, Nitzan A. J Chem Phys, 2006, 124: 234709

    Article  PubMed  CAS  Google Scholar 

  36. Arielly R, Ofarim A, Noy G, Selzer Y. Nano Lett, 2011, 11: 2968–2972

    Article  CAS  PubMed  Google Scholar 

  37. Dulić D, van der Molen SJ, Kudernac T, Jonkman HT, de Jong JJD, Bowden TN, van Esch J, Feringa BL, van Wees BJ. Phys Rev Lett, 2003, 91: 207402

    Article  PubMed  CAS  Google Scholar 

  38. Jia C, Wang J, Yao C, Cao Y, Zhong Y, Liu Z, Liu Z, Guo X. Angew Chem Int Ed, 2013, 52: 8666–8670

    Article  CAS  Google Scholar 

  39. Noy G, Ophir A, Selzer Y. Angew Chem, 2010, 122: 5870–5872

    Article  Google Scholar 

  40. Kazuma E, Jung J, Ueba H, Trenary M, Kim Y. Science, 2018, 360: 521–526

    Article  CAS  PubMed  Google Scholar 

  41. Christopher P, Xin H, Linic S. Nat Chem, 2011, 3: 467–472

    Article  CAS  PubMed  Google Scholar 

  42. Wu DY, Liu XM, Duan S, Xu X, Ren B, Lin SH, Tian ZQ. J Phys Chem C, 2008, 112: 4195–4204

    Article  CAS  Google Scholar 

  43. Jia C, Guo X. Chem Soc Rev, 2013, 42: 5642–5660

    Article  CAS  PubMed  Google Scholar 

  44. Sun L, Diaz-Fernandez YA, Gschneidtner TA, Westerlund F, Lara-Avila S, Moth-Poulsen K. Chem Soc Rev, 2014, 43: 7378–7411

    Article  CAS  PubMed  Google Scholar 

  45. Dai X, Deng Y, Peng X, Jin Y. Adv Mater, 2017, 29: 1607022

    Article  CAS  Google Scholar 

  46. Dong ZC, Zhang XL, Gao HY, Luo Y, Zhang C, Chen LG, Zhang R, Tao X, Zhang Y, Yang JL, Hou JG. Nat Photon, 2010, 4: 50–54

    Article  CAS  Google Scholar 

  47. Gonzalez JI, Lee TH, Barnes MD, Antoku Y, Dickson RM. Phys Rev Lett, 2004, 93: 147402

    Article  PubMed  CAS  Google Scholar 

  48. Goswami HP, Hua W, Zhang Y, Mukamel S, Harbola U. J Chem Theor Comput, 2015, 11: 4304–4315

    Article  CAS  Google Scholar 

  49. Gimzewski JK, Reihl B, Coombs JH, Schlittler RR. Z Physik BCondensed Matter, 1988, 72: 497–501

    Article  CAS  Google Scholar 

  50. Marquardt CW, Grunder S, Błaszczyk A, Dehm S, Hennrich F, Löhneysen HV, Mayor M, Krupke R. Nat Nanotech, 2010, 5: 863–867

    Article  CAS  Google Scholar 

  51. Reecht G, Scheurer F, Speisser V, Dappe YJ, Mathevet F, Schull G. Phys Rev Lett, 2014, 112: 047403

    Article  PubMed  CAS  Google Scholar 

  52. Chong MC, Reecht G, Bulou H, Boeglin A, Scheurer F, Mathevet F, Schull G. Phys Rev Lett, 2016, 116: 036802

    Article  PubMed  CAS  Google Scholar 

  53. Chong MC, Afshar-Imani N, Scheurer F, Cardoso C, Ferretti A, Prezzi D, Schull G. Nano Lett, 2018, 18: 175–181

    Article  CAS  PubMed  Google Scholar 

  54. Du W, Wang T, Chu HS, Wu L, Liu R, Sun S, Phua WK, Wang L, Tomczak N, Nijhuis CA. Nat Photon, 2016, 10: 274–280

    Article  CAS  Google Scholar 

  55. Kaasbjerg K, Nitzan A. Phys Rev Lett, 2015, 114: 126803

    Article  PubMed  CAS  Google Scholar 

  56. Galperin M. Chem Soc Rev, 2017, 46: 4000–4019

    Article  CAS  PubMed  Google Scholar 

  57. Shoute LCT, Wu Y, McCreery RL. Electrochim Acta, 2013, 110: 437–445

    Article  CAS  Google Scholar 

  58. Ward DR, Halas NJ, Ciszek JW, Tour JM, Wu Y, Nordlander P, Natelson D. Nano Lett, 2008, 8: 919–924

    Article  CAS  PubMed  Google Scholar 

  59. Lefenfeld M, Baumert J, Sloutskin E, Kuzmenko I, Pershan P, Deutsch M, Nuckolls C, Ocko BM. Proc Natl Acad Sci USA, 2006, 103: 2541–2545

    Article  CAS  PubMed  Google Scholar 

  60. Jun Y, Zhu XY. J Am Chem Soc, 2004, 126: 13224–13225

    Article  CAS  PubMed  Google Scholar 

  61. Ding SY, Yi J, Li JF, Ren B, Wu DY, Panneerselvam R, Tian ZQ. Nat Rev Mater, 2016, 1: 16021

    Article  CAS  Google Scholar 

  62. Shi X, Coca-López N, Janik J, Hartschuh A. Chem Rev, 2017, 117: 4945–4960

    Article  CAS  PubMed  Google Scholar 

  63. Li JF, Zhang YJ, Ding SY, Panneerselvam R, Tian ZQ. Chem Rev, 2017, 117: 5002–5069

    Article  CAS  PubMed  Google Scholar 

  64. Tian JH, Liu B, Li B, Yang ZL, Ren B, Wu ST, Tao ST, Tian ZQ. J Am Chem Soc, 2006, 128: 14748–14749

    Article  CAS  PubMed  Google Scholar 

  65. Wang L, Wang L, Zhang L, Xiang D. Top Curr Chem (Z), 2017, 375: 61

    Article  CAS  Google Scholar 

  66. Xiang D, Jeong H, Lee T, Mayer D. Adv Mater, 2013, 25: 4845–4867

    Article  CAS  PubMed  Google Scholar 

  67. Tian JH, Liu B, Jin S, Dai K, Chen ZB, Li XL, Ke HX, Wu ST, Yang Y, Ren B, Mao BW, Tao NJ, Tian ZQ. A combined SERS and MCBJ study on molecular junctions on silicon chips. In: 2007 7th IEEE Conference on Nanotechnology (IEEE NANO). Hong Kong, China, 2007. 1302–1305

    Chapter  Google Scholar 

  68. Ward DR, Grady NK, Levin CS, Halas NJ, Wu Y, Nordlander P, Natelson D. Nano Lett, 2007, 7: 1396–1400

    Article  CAS  PubMed  Google Scholar 

  69. Liu Z, Ding SY, Chen ZB, Wang X, Tian JH, Anema JR, Zhou XS, Wu DY, Mao BW, Xu X, Ren B, Tian ZQ. Nat Commun, 2011, 2: 305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Bi H, Palma CA, Gong Y, Hasch P, Elbing M, Mayor M, Reichert J, Barth JV. J Am Chem Soc, 2018, 140: 4835–4840

    Article  CAS  PubMed  Google Scholar 

  71. El-Khoury PZ, Hu D, Hess WP. J Phys Chem Lett, 2013, 4: 3435–3439

    Article  CAS  Google Scholar 

  72. El-Khoury PZ, Hu D, Apkarian VA, Hess WP. Nano Lett, 2013, 13: 1858–1861

    Article  CAS  PubMed  Google Scholar 

  73. Pal PP, Jiang N, Sonntag MD, Chiang N, Foley ET, Hersam MC, Van Duyne RP, Seideman T. J Phys Chem Lett, 2015, 6: 4210–4218

    Article  CAS  PubMed  Google Scholar 

  74. Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG. Nature, 2013, 498: 82–86

    Article  CAS  PubMed  Google Scholar 

  75. White AJ, Sukharev M, Galperin M. Phys Rev B, 2012, 86: 205324

    Article  CAS  Google Scholar 

  76. Park TH, Galperin M. EPL, 2011, 95: 27001

    Article  CAS  Google Scholar 

  77. Wu DY, Zhao LB, Liu XM, Huang R, Huang YF, Ren B, Tian ZQ. Chem Commun, 2011, 47: 2520–2522

    Article  CAS  Google Scholar 

  78. Ward DR, Corley DA, Tour JM, Natelson D. Nat Nanotech, 2011, 6: 33–38

    Article  CAS  Google Scholar 

  79. Ioffe Z, Shamai T, Ophir A, Noy G, Yutsis I, Kfir K, Cheshnovsky O, Selzer Y. Nat Nanotech, 2008, 3: 727–732

    Article  CAS  Google Scholar 

  80. Galperin M, Ratner MA, Nitzan A. Nano Lett, 2009, 9: 758–762

    Article  CAS  PubMed  Google Scholar 

  81. Galperin M, Ratner MA, Nitzan A. J Chem Phys, 2009, 130: 144109

    Article  PubMed  CAS  Google Scholar 

  82. White AJ, Tretiak S, Galperin M. Nano Lett, 2014, 14: 699–703

    Article  CAS  PubMed  Google Scholar 

  83. Park TH, Galperin M. Phys Rev B, 2011, 84: 075447

    Article  CAS  Google Scholar 

  84. Konishi T, Kiguchi M, Takase M, Nagasawa F, Nabika H, Ikeda K, Uosaki K, Ueno K, Misawa H, Murakoshi K. J Am Chem Soc, 2012, 135: 1009–1014

    Article  PubMed  CAS  Google Scholar 

  85. Gu C, Jia C, Guo X. Small Methods, 2017, 1: 1700071

    Article  CAS  Google Scholar 

  86. Aragonès AC, Haworth NL, Darwish N, Ciampi S, Bloomfield NJ, Wallace GG, Diez-Perez I, Coote ML. Nature, 2016, 531: 88–91

    Article  PubMed  CAS  Google Scholar 

  87. Zhou C, Li X, Gong Z, Jia C, Lin Y, Gu C, He G, Zhong Y, Yang J, Guo X. Nat Commun, 2018, 9: 807

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kurouski D, Mattei M, Van Duyne RP. Nano Lett, 2015, 15: 7956–7962

    Article  CAS  PubMed  Google Scholar 

  89. Zaleski S, Wilson AJ, Mattei M, Chen X, Goubert G, Cardinal MF, Willets KA, Van Duyne RP. Acc Chem Res, 2016, 49: 2023–2030

    Article  CAS  PubMed  Google Scholar 

  90. Di Martino G, Turek VA, Lombardi A, Szabó I, de Nijs B, Kuhn A, Rosta E, Baumberg JJ. Nano Lett, 2017, 17: 4840–4845

    Article  PubMed  CAS  Google Scholar 

  91. Mirjani F, Thijssen JM, Ratner MA. J Phys Chem C, 2012, 116: 23120–23129

    Article  CAS  Google Scholar 

  92. Li Y, Doak P, Kronik L, Neaton JB, Natelson D. Proc Natl Acad Sci USA, 2014, 111: 1282–1287

    Article  CAS  PubMed  Google Scholar 

  93. Li Y, Zolotavin P, Doak P, Kronik L, Neaton JB, Natelson D. Nano Lett, 2016, 16: 1104–1109

    Article  CAS  PubMed  Google Scholar 

  94. Slocum JD, Webb LJ. Annu Rev Phys Chem, 2018, 69: 253–271

    Article  CAS  PubMed  Google Scholar 

  95. Duan S, Xu X, Luo Y, Tian ZQ. Chem Commun, 2011, 47: 11438–11440

    Article  CAS  Google Scholar 

  96. Oren M, Galperin M, Nitzan A. Phys Rev B, 2012, 85: 115435

    Article  CAS  Google Scholar 

  97. Gao Y, Galperin M, Nitzan A. J Chem Phys, 2016, 144: 244114

    Article  PubMed  CAS  Google Scholar 

  98. Isshiki Y, Fujii S, Nishino T, Kiguchi M. J Am Chem Soc, 2018, 140: 3760–3767

    Article  CAS  PubMed  Google Scholar 

  99. Komoto Y, Isshiki Y, Fujii S, Nishino T, Kiguchi M. Chem Asian J, 2017, 12: 440–445

    Article  CAS  PubMed  Google Scholar 

  100. Kaneko S, Murai D, Marqués-González S, Nakamura H, Komoto Y, Fujii S, Nishino T, Ikeda K, Tsukagoshi K, Kiguchi M. J Am Chem Soc, 2016, 138: 1294–1300

    Article  CAS  PubMed  Google Scholar 

  101. Clavero C. Nat Photon, 2014, 8: 95–103

    Article  CAS  Google Scholar 

  102. Wang X, Braun K, Zhang D, Peisert H, Adler H, Chassé T, Meixner AJ. ACS Nano, 2015, 9: 8176–8183

    Article  CAS  PubMed  Google Scholar 

  103. Ward DR, Hüser F, Pauly F, Cuevas JC, Natelson D. Nat Nanotech, 2010, 5: 732–736

    Article  CAS  Google Scholar 

  104. Gilbert M, Albinsson B. Chem Soc Rev, 2015, 44: 845–862

    Article  CAS  PubMed  Google Scholar 

  105. Zhang Y, He S, Guo W, Hu Y, Huang J, Mulcahy JR, Wei WD. Chem Rev, 2018, 118: 2927–2954

    Article  CAS  PubMed  Google Scholar 

  106. Wang P, Krasavin AV, Nasir ME, Dickson W, Zayats AV. Nat Nanotech, 2018, 13: 159–164

    Article  CAS  Google Scholar 

  107. Sprague-Klein EA, McAnally MO, Zhdanov DV, Zrimsek AB, Apkarian VA, Seideman T, Schatz GC, van Duyne RP. J Am Chem Soc, 2017, 139: 15212–15221

    Article  CAS  PubMed  Google Scholar 

  108. de Nijs B, Benz F, Barrow SJ, Sigle DO, Chikkaraddy R, Palma A, Carnegie C, Kamp M, Sundararaman R, Narang P, Scherman OA, Baumberg JJ. Nat Commun, 2017, 8: 994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Zheng J, Liu J, Zhuo Y, Li R, Jin X, Yang Y, Chen ZB, Shi J, Xiao Z, Hong W, Tian ZQ. Chem Sci, 2018, 9: 5033–5038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Gao Y, Galperin M. J Chem Phys, 2016, 144: 244106

    Article  PubMed  CAS  Google Scholar 

  111. Gao Y, Galperin M. J Chem Phys, 2016, 144: 174113

    Article  PubMed  CAS  Google Scholar 

  112. White AJ, Ochoa MA, Galperin M. J Phys Chem C, 2014, 118: 11159–11173

    Article  CAS  Google Scholar 

  113. Bâldea I, Xie Z, Frisbie CD. Nanoscale, 2015, 7: 10465–10471

    Article  PubMed  CAS  Google Scholar 

  114. Guan J, Jia C, Li Y, Liu Z, Wang J, Yang Z, Gu C, Su D, Houk KN, Zhang D, Guo X. Sci Adv, 2018, 4: eaar2177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0204901, 2017YFA0204902), the National Natural Science Foundation of China (21673195, 61571242, 21503179, 21727806, 21722305), and the Young Thousand Talent Project of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjing Hong, Xuefeng Guo or Dong Xiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Feng, A., Wang, M. et al. Towards single-molecule optoelectronic devices. Sci. China Chem. 61, 1368–1384 (2018). https://doi.org/10.1007/s11426-018-9356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9356-2

Keywords

Navigation